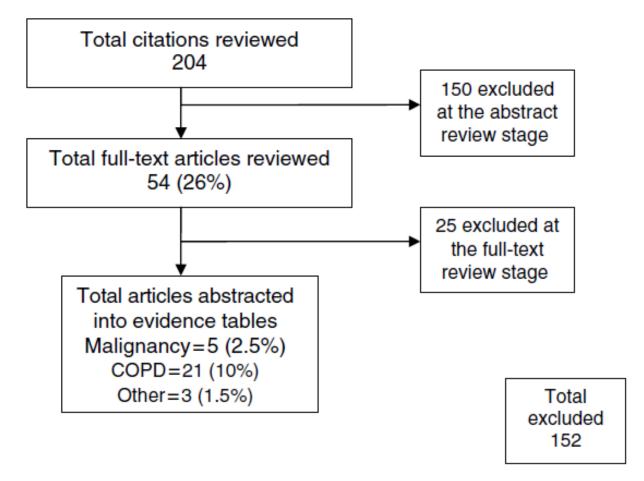
Chapitre 4: Le support ventilatoire.

Deuxième question de la conférence de consensus

Quelle assistance ventilatoire [oxygénation à haut débit, ventilation non invasive (VNI), ventilation mécanique invasive (IMV), oxygénation par membrane extra-corporelle (ECMO)] doit être utilisée, pour quelles complications et dans quel environnement ?

1. Oxygénothérapie standard

Pas de littérature vraiment relevante


© 2008 Cancer Research UK All rights reserved 0007 – 0920/08 \$30.00

www.bjcancer.com

Oxygen for relief of dyspnoea in mildly- or non-hypoxaemic patients with cancer: a systematic review and meta-analysis

HE Uronis^{1,2}, DC Currow³, DC McCrory^{4,5}, GP Samsa^{5,6} and AP Abernethy*, 1,3

¹Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, USA; ²Health Services Research and Development, Durham Veteran's Affairs Medical Center, Durham, NC, USA; ³Department of Palliative and Supportive Services, Division of Medicine, Flinders University, Bedford Park, South Australia, Australia; ⁴Division of General Internal Medicine, Department of Medicine, Duke University Medical Center, Durham, NC, USA; ⁵Center for Clinical Health Policy Research, Duke University Medical Center, Durham, NC, USA; ⁶Department of Biostatistics and Bioinformatics, Duke University, Durham, NC. USA

Figure I Flowchart of articles reviewed for the systematic analysis of the benefit of palliative oxygen for the relief of dyspnoea in people with cancer who do not qualify for long-term domiciliary oxygen therapy.

Table I Characteristics of included studies exploring the role of oxygen therapy in people with refractory dyspnoea who do not qualify for long-term oxygen therapy

Reference	n	Population	O ₂ saturation < 90% included?	Intervention	Outcome measure	Results	Q uality ^a
(Philip et al, 2006)	51	Cancer of any type, dyspnoea	Yes 17 (33%)	CA vs O ₂ , 41 min ⁻¹ at rest	100 mm VAS	No significant difference in dyspnoea with O ₂ vs CA	2
(Ahmedzai et al, 1998, 2004)	12	Lung cancer, dyspnoea on exertion	No	CA vs O ₂ , 8-101min ⁻¹ during 6MWT	Modified Borg and 100 mm VAS	No significant difference in dyspnoea with O ₂ vs CA	2
(Bruera et al, 2003)	33	Advanced cancer of any type, dyspnoea at rest or on mild exertion	No	CA vs O_2 , 51min^{-1} during 6MWT	NRS	No significant difference in dyspnoea with O ₂ vs CA	5
(Booth et al, 1996, 2004)	38	Advanced cancer of any type, dyspnoea at rest	Yes 6 (16%)	CA vs O ₂ , 41 min ⁻¹ at rest	Modified Borg and 100 mm VAS	No significant difference in dyspnoea with O ₂ vs CA	2
(Bruera et al, 1993)	14	Advanced cancer of any type, dyspnoea, oxygen saturation < 90%	Yes 14 (100%)	CA vs O ₂ 5 Imin ⁻¹ at rest	NRS	Significant improvement in dyspnoea with O_2 vs CA	2

Abbreviations: CA = compressed air; $O_2 = oxygen$; 6MWT = 6-min walk test; VAS = visual analog scale; NRS = numerical rating scale. ^aQuality as assessed by Jadad score (Jadad et al, 1996).

Review: Palliative oxygen therapy for dyspnea in patients with malignancy

Comparison: 01 breathlessness Outcome: 01 breathlessness

Study SMD (fixed) (95% CI) or subcategory SMD (s.e.) Weight (%) SMD (fixed) (95% CI) Quality Bruera -0.1600(0.2100)9.61 -0.16 [-0.57, 0.25] D 66.24 Booth -0.1200(0.0800)-0.12 [-0.28, 0.04] D Ahmedzai -0.6500(0.4100)2.52 -0.65 [-1.45, 0.15] D -0.0900 (0.1400) 21.63 -0.09 [-0.18, 0.36] D Philip Total (95% CI) 100.00 -0.09 [-0.22, 0.04] Test for heterogeneity: $\chi^2=3.77$, df=3 (P=0.29), $I^2=20.4\%$ Test for overall effect: Z=1.41 (P=0.16) -2 2 Favours oxygen Favours air

Figure 2 Estimation of efficacy of oxygen in the treatment of dyspnoea in cancer patients who do not qualify for long-term domiciliary oxygen therapy.

Review: Palliative oxygen therapy for dyspnea in patients with malignancy

Comparison: 01 breathlessness

Outcome: 02 breathlessness no imputed quantities

Study Quality or subcategory SMD (s.e.) SMD (fixed) (95% CI) Weight (%) SMD (fixed) (95% CI) Bruera -0.1600(0.2100)9.86 -0.16 [-0.57, 0.25] D Booth -0.1200(0.0800)67.95 -0.12 [-0.28, 0.04] D Philip -0.0900 (0.1400) 22.19 -0.09 [-0.18, 0.36] D Total (95% CI) 100.00 -0.08 [-0.21, 0.05] Test for heterogeneity: $\chi^2 = 1.87$, df = 2 (P = 0.39), $I^2 = 0\%$ Test for overall effect: Z=1.17 (P=0.24) -0.50 0.5 -1 1 Favours treatment Favours control

Figure 3 Sensitivity analysis of blinded, randomised controlled trials exploring the symptomatic benefit of oxygen therapy in reducing refractory dyspnoea in a palliative population which does not qualify for domiciliary oxygen – no studies requiring use of imputed quantities.

Recommandations

- L'oxygénothérapie standard ne devrait probablement pas être administrée dans un cadre palliatif avec la seule intention de réduire la dyspnée. (Grade B, forte recommandation)
- Une oxygénothérapie standard doit être administrée aux patients cancéreux admis aux soins intensifs avec une insuffisance respiratoire aiguë pour atteindre une SpO2 > 90 %. (Avis d'expert, recommandation forte)

2. Oxygénation à haut débit (OHD)

- Sept études ont comparé l'OHD à l'oxygénothérapie standard.
- Deux de ces études étaient des essais randomisés et incluaient des patients immunodéprimés avec une grande proportion de tumeurs malignes. Ces études n'ont montré aucune réduction de la mortalité ou du taux d'intubation.
- Les résultats des études rétrospectives sont discordants. Trois n'ont montré aucun avantage en termes de taux de mortalité ou d'intubation. L'une a montré une diminution de la mortalité à 28 jours, mais dans cette étude, les patients ont reçu une OHD et une ventilation non invasive (VNI). La dernière étude a montré une réduction du taux d'intubation, sans toutefois une réduction de la mortalité hospitalière.

RESEARCH Open Access

The effects of a 2-h trial of high-flow oxygen by nasal cannula versus Venturi mask in immunocompromised patients with hypoxemic acute respiratory failure: a multicenter randomized trial

Virginie Lemiale^{1*}, Djamel Mokart², Julien Mayaux³, Jérôme Lambert⁴, Antoine Rabbat⁵, Alexandre Demoule³ and Elie Azoulay¹

Table 2 Primary and secondary endpoints in the two treatment groups

	HFNO group	Venturi mask group	P value
	(n = 52)	(n = 48)	
Primary endpoint			
Number (%) of patients requiring mechanical ventilation	8 (15 %)	4 (8 %)	0.36
Noninvasive mechanical ventilation	6 ^a	3 ^a	
Invasive mechanical ventilation	4	2	
Secondary endpoints, median [25th-75th percentile]			
Discomfort VAS score ^b at 120 min	3 [1–5]	3 [0–5]	0.88
Dyspnea VAS score ^b at 120 min	3 [2 – 6]	3 [1–6]	0.87
Thirst VAS score ^b at 120 min	6 [3–8]	6 [5 – 9]	0.40
Respiratory rate at 120 min, breaths/min	25 [22–29]	25 [21–31]	
Heart rate at 120 min, beats/min	98 [90–110]	99 [83–112]	0.43

HFNO high-flow nasal oxygen, VAS visual analogue scale

^aTwo patients in the HFNO group and one patient in the Venturi mask group received noninvasive ventilation followed by invasive mechanical ventilation ^bAll three VASs ranged from 0 (absence of discomfort, dyspnea, or thirst) to 10 (worst possible discomfort, dyspnea, or thirst)

Research

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of High-Flow Nasal Oxygen vs Standard Oxygen on 28-Day Mortality in Immunocompromised Patients With Acute Respiratory Failure The HIGH Randomized Clinical Trial

Elie Azoulay, MD, PhD; Virginie Lemiale, MD; Djamel Mokart, MD, PhD; Saad Nseir, MD, PhD; Laurent Argaud, MD, PhD; Frédéric Pène, MD, PhD; Loay Kontar, MD; Fabrice Bruneel, MD; Kada Klouche, MD, PhD; François Barbier, MD, PhD; Jean Reignier, MD, PhD; Lilia Berrahil-Meksen, MD; Guillaume Louis, MD; Jean-Michel Constantin, MD, PhD; Julien Mayaux, MD; Florent Wallet, MD; Achille Kouatchet, MD; Vincent Peigne, MD; Igor Théodose, MS; Pierre Perez, MD; Christophe Girault, MD; Samir Jaber, MD, PhD; Johanna Oziel, MD; Martine Nyunga, MD; Nicolas Terzi, MD, PhD; Lila Bouadma, MD, PhD; Christine Lebert, MD; Alexandre Lautrette, MD, PhD; Naike Bigé, MD, PhD; Jean-Herlé Raphalen, MD; Laurent Papazian, MD, PhD; Michael Darmon, MD, PhD; Sylvie Chevret, MD, PhD; Alexandre Demoule, MD, PhD

Table 1. Patient Characteristics at Randomization

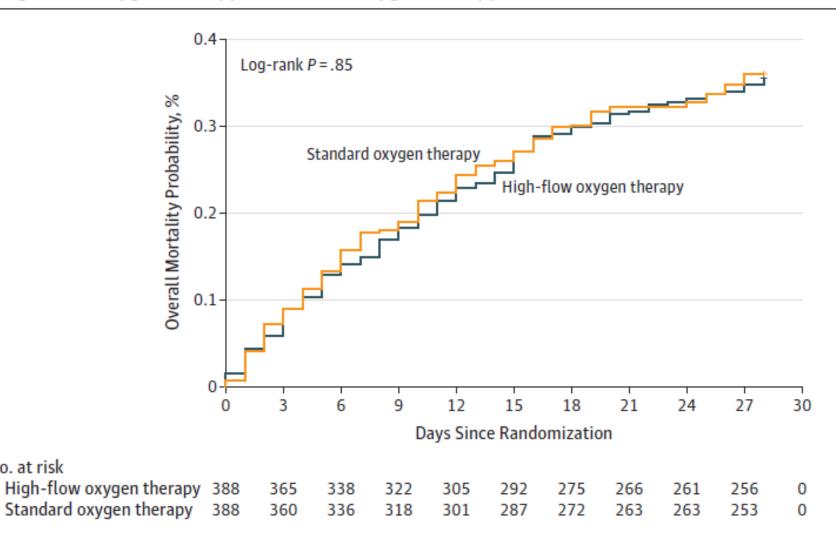

No. (%)	
High-Flow Oxygen Therapy (n = 388)	Standard Oxygen Therapy (n = 388)
(223)	(223)
64 (55-70)	63 (56-71)
270 (69.6)	247 (63.6)
118 (30.4)	141 (36.4)
115 (29.6)	127 (32.7)
23 (5.9)	27 (6.9)
45 (13.3)	56 (14.4)
73 (18.8)	69 (20.4)
5 (4-7)	5 (3-7)
294 (75.8)	319 (82.2)
167 (43.0)	181 (46.6)
127 (32.7)	138 (35.6)
133 (34.3)	135 (34.8)
89 (22.9)	98 (25.2)
44 (11.3)	37 (9.5)
6.4 (1-29)	7.0 (0.8-40.0)
221/294 (75.2)	228/319 (71.5)
26/167 (15.6)	22/181 (12.1)
28/167 (16.8)	33/181 (18.2)
61 (15.7)	54 (13.9)
	High-Flow Oxygen Therapy (n = 388) 64 (55-70) 270 (69.6) 118 (30.4) 115 (29.6) 23 (5.9) 45 (13.3) 73 (18.8) 5 (4-7) 294 (75.8) 167 (43.0) 127 (32.7) 133 (34.3) 89 (22.9) 44 (11.3) 6.4 (1-29) 221/294 (75.2) 26/167 (15.6) 28/167 (16.8)

Table 2. Primary and Secondary End Points^a

	No. (%)				
End Points	High-Flow Oxygen Therapy (n = 388)	Standard Oxygen Therapy (n = 388)	— Mean Difference, % (95% CI) ^b	Relative Difference (95% CI)	P Value
Primary					
All-cause day-28 mortality	138 (35.6)	140 (36.1)	-0.5 (-7.3 to 6.3)	HR, 0.98 (0.77 to 1.24)	.94
Secondary					
Invasive mechanical ventilation ^c	150 (38.7)	170 (43.8)	-5.1 (-12.3 to 2.0)	HR, 0.85 (0.68 to 1.06) ^d	.17
ICU-acquired infection	39 (10.0)	41 (10.6)	-0.6 (-4.6 to 4.1)	HR, 1.01 (0.96 to 1.06) ^d	.91
ICU mortality	123 (31.7)	122 (31.4)	0.3 (-6.3 to 6.8)	RR, 1.01 (0.82 to 1.24)	.64
Hospital mortality	160 (41.2)	162 (41.7)	-0.5 (-7.5 to 6.4)	RR, 0.99 (0.84 to 1.17)	.77
Length of stay, median (IQR), d					
ICU	8 (4-14)	6 (4-13)	0.6 (-1.0 to 2.2)	NA ^e	.07
Hospital	24 (14-40)	27 (15-42)	-2 (-7.3 to 3.3)	NA ^e	.60

Figure 2. Probability of Day-28 Mortality in Immunocompromised Patients With Acute Respiratory Failure Receiving High-Flow Oxygen Therapy or Standard Oxygen Therapy

No. at risk

Conclusion

Parmi les patients immunodéprimés gravement malades souffrant d'insuffisance respiratoire aiguë, l'oxygénothérapie à haut débit n'a pas diminué de manière significative la mortalité au jour 28 par rapport à l'oxygénothérapie standard.

Recommandations

- L'OHD ne devrait probablement pas être administrée systématiquement à la place de l'oxygénothérapie standard chez les patients cancéreux admis en réanimation avec insuffisance respiratoire aiguë (Grade A, forte recommandation).
- Si l'OHD est utilisée, elle doit être limitée aux patients sans altération de conscience et sans dysfonctionnement d'organe autre que l'insuffisance respiratoire. L'OHD doit être délivrée pour une durée limitée. Une surveillance étroite en réanimation permet une réévaluation précoce de son efficacité (Avis d'expert, recommandation forte).

3. Ventilation non invasive (VNI)

Les données relatives aux bienfaits de la VNI sont contradictoires. Il y a vingt ans, Hilbert et al. ont comparé la VNI à la thérapie standard à l'O₂ dans un essai randomisé qui comprenait 54 patients immunodéprimés souffrant de fièvre, d'infiltrats pulmonaires et d'insuffisance respiratoire aiguë. Les patients recevant la VNI avaient une diminution du taux d'intubation et de la mortalité.

Ces résultats n'ont pas pu être confirmés dans un grand essai contrôlé plus récent. Cela peut s'expliquer par une amélioration significative des soins de soutien aux patients oncologiques gravement malades au cours des dernières décennies, avec une réduction de la mortalité en conséquence. Néanmoins, il est important de noter que l'échec de la VNI dans les études observationnelles est associé à une mortalité plus élevée que l'intubation précoce.

NONINVASIVE VENTILATION IN IMMUNOSUPPRESSED PATIENTS WITH PULMONARY INFILTRATES, FEVER, AND ACUTE RESPIRATORY FAILURE

GILLES HILBERT, M.D., DIDIER GRUSON, M.D., FRÉDERIC VARGAS, M.D., RUDDY VALENTINO, M.D., GEORGES GBIKPI-BENISSAN, M.D., MICHEL DUPON, M.D., JOSY REIFFERS, M.D., AND JEAN P. CARDINAUD, M.D.

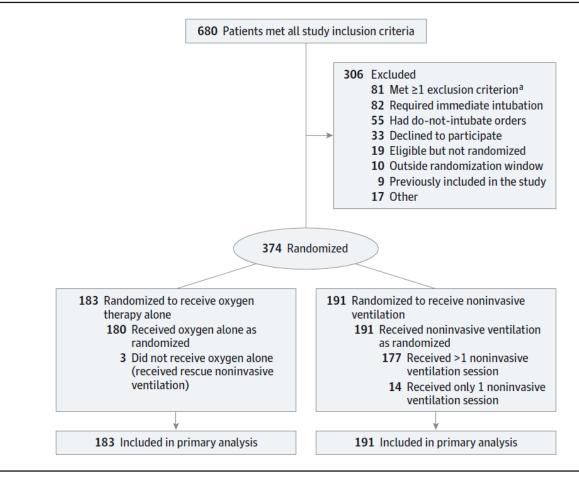
le recours à la VNI permet de réduire le recours à la ventilation invasive et la mortalité par rapport aux soins standards incluant l'oxygénothérapie.

TABLE 1. BASE-LINE CHARACTERISTICS OF THE PATIENTS.*

Characteristic	Noninvasive- Ventilation Group (N=26)	STANDARD- TREATMENT GROUP (N=26)
Age — yr	48 ± 14	50±12
Male sex — no. (%)	18 (69)	19 (73)
SAPS II†	45 ± 10	42±9
Respiratory rate — breaths/min	35 ± 3	36±3
Heart rate — beats/min	108±16	111±14
Systolic blood pressure — mm Hg	127±19	123±17
Body temperature — °C	38.3±0.6	38.5 ± 0.6
Microbiologic diagnosis of pneumonia — no. (%)‡	13 (50)	11 (42)
PaO ₂ :FiO ₂	141 ± 24	136±23
PaCO ₂ — mm Hg	37 ± 4	38±5
Arterial pH	7.45 ± 0.04	7.43 ± 0.04
White-cell count — cells/mm³ Patients with immunosuppression from hematologic cancer and neutropenia Patients with other types of immunosuppression	264±163 9980±5290	241±147 10,590±5730
Types of immunosuppression — no. (%) Hematologic cancer and neutropenia Bone marrow transplantation High-dose chemotherapy Drug-induced immunosuppression Organ transplantation Corticosteroid therapy	15 (58) 8 (31) 7 (27) 9 (35) 3 (12) 4 (15)	15 (58) 9 (35) 6 (23) 9 (35) 4 (15) 3 (12)
Other	2 (8)	2 (8)
Acquired immunodeficiency syndrome	2 (8)	2 (8)

TABLE 2. OUTCOMES OF TREATMENT.*

Оитсоме	Noninvasive- Ventilation Group (N=26)	STANDARD- TREATMENT GROUP (N=26)	P Value	RELATIVE RISK (95% CI)
Intubation — no./total no. (%) Immunosuppression from hematologic cancer and neutropenia Drug-induced immunosuppression Immunosuppression from the acquired immunodeficiency syndrome	12/26 (46) 8/15 (53) 3/9 (33) 1/2 (50)	20/26 (77) 14/15 (93) 5/9 (56) 1/2 (50)	0.03 0.02 0.32 0.83	0.60 (0.38-0.96) 0.57 (0.35-0.93) 0.60 (0.20-1.79) 1.00 (0.14-7.10)
Initial improvement in PaO ₂ :FiO ₂ — no. (%)	12 (46)	4 (15)	0.02	
Sustained improvement in PaO ₂ :FiO ₂ without intubation — no. (%)	13 (50)	5 (19)	0.02	
Death in the ICU — no./total no. (%)† Immunosuppression from hematologic cancer and neutropenia Drug-induced immunosuppression Immunosuppression from the acquired immunodeficiency syndrome	10/26 (38) 7/15 (47) 3/9 (33) 0/2	18/26 (69) 13/15 (87) 4/9 (44) 1/2 (50)	0.03 0.02 0.50 0.50	0.56 (0.32-0.96) 0.54 (0.30-0.96) 0.75 (0.23-2.44) 0.50 (0.13-2.00)
Total duration of any ventilatory assistance — days Among all patients Among survivors	6±3 5±2	6±5 3±5	0.59 0.12	,
Length of ICU stay — days Among all patients Among survivors	7±3 7±3	9±4 10±4	0.11 0.06	
Death in the hospital — no./total no. (%) Immunosuppression from hematologic cancer and neutropenia Drug-induced immunosuppression Immunosuppression from the acquired immunodeficiency syndrome	13/26 (50) 8/15 (53) 4/9 (44) 1/2 (50)	21/26 (81) 14/15 (93) 6/9 (67) 1/2 (50)	0.02 0.02 0.32 0.83	0.62 (0.40-0.95) 0.57 (0.35-0.93) 0.67 (0.28-1.58) 1.00 (0.14-7.10)


Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Noninvasive Ventilation vs Oxygen Therapy on Mortality Among Immunocompromised Patients With Acute Respiratory Failure A Randomized Clinical Trial

Virginie Lemiale, MD; Djamel Mokart, MD; Matthieu Resche-Rigon, MD, PhD; Frédéric Pène, MD, PhD; Julien Mayaux, MD; Etienne Faucher, MD; Martine Nyunga, MD; Christophe Girault, MD, PhD; Pierre Perez, MD; Christophe Guitton, MD, PhD; Kenneth Ekpe, MD; Achille Kouatchet, MD; Igor Théodose, MS; Dominique Benoit, MD, PhD; Emmanuel Canet, MD; François Barbier, MD, PhD; Antoine Rabbat, MD; Fabrice Bruneel, MD; François Vincent, MD; Kada Klouche, MD, PhD; Kontar Loay, MD; Eric Mariotte, MD; Lila Bouadma, MD, PhD; Anne-Sophie Moreau, MD; Amélie Seguin, MD; Anne-Pascale Meert, MD, PhD; Jean Reignier, MD, PhD; Laurent Papazian, MD, PhD; Ilham Mehzari, MD; Yves Cohen, MD, PhD; Maleka Schenck, MD; Rebecca Hamidfar, MD; Michael Darmon, MD, PhD; Alexandre Demoule, MD, PhD; Sylvie Chevret, MD, PhD; Elie Azoulay, MD, PhD; for the Groupe de Recherche en Réanimation Respiratoire du patient d'Onco-Hématologie (GRRR-OH)

JAMA. 2015;314(16):1711-1719. doi:10.1001/jama.2015.12402

Figure 1. Flow of Participants Through Study

In both groups, oxygenation modalities and the use of highflow nasal oxygen were at the clinician's discretion. Noninvasive ventilation was not allowed for patients allocated to the oxygen group except, if needed, for preoxygenation before intubation or for up 2 hours to improve the safety of bronchoscopy and bronchoalveolar lavage.

Table 1. Patient Characteristics at Randomization

	No. (%)			
Characteristic	Oxygen Alone (n = 183)	Noninvasive Ventilation (n = 191)		
Age, median (IQR), y	64 (53-72)	61 (52-70)		
Men	105 (57.4)	117 (61.3)		
Underlying conditions	155 (84.7)	162 (84.8)		
Cancer				
Hematologic malignancies	113 (61.7)	125 (65.4)		
Solid tumors	42 (23.0)	37 (19.4)		
Immunosuppressive drugs	28 (15.3)	29 (15.2)		
For non-transplant-related reasons	17 (9.3)	16 (8.4)		
After solid organ transplantation	11 (6.0)	13 (6.8)		
Chemotherapy at admission	84/155 (54.2)	86/162 (53.1)		
Chronic hematologic malignancy	35/155 (22.6)	39/162 (24.1)		
Allogeneic stem cell transplantation	29/155 (18.7)	26/162 (16.1)		
Remission of the malignancy	19/155 (12.3)	18/162 (11.1)		
For non-transplant-related reasons After solid organ transplantation Chemotherapy at admission Chronic hematologic malignancy Allogeneic stem cell transplantation	28 (15.3) 17 (9.3) 11 (6.0) 84/155 (54.2) 35/155 (22.6) 29/155 (18.7)	29 (15.2) 16 (8.4) 13 (6.8) 86/162 (53.1 39/162 (24.1 26/162 (16.1		

Table 2. Diagnostic Strategies and Identified Causes of Acute Respiratory Failure

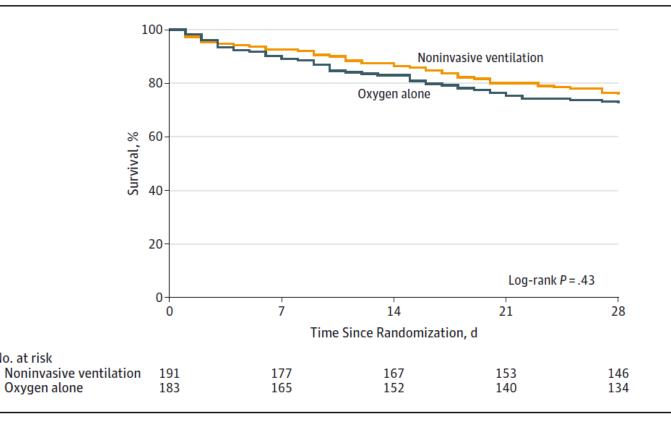

	No. (%)	
	Oxygen Alone (n = 183)	Noninvasive Ventilation (n = 191)
Noninvasive diagnostic tests	163 (89.1)	163 (85.3)
Bronchoscopy and bronchoalveolar lavage	78 (42.6)	64 (33.9)
Causes ^a		
Bacterial pneumonia ^b	83 (45.6)	87 (45.5)
Pneumocystis jirovecii pneumonia	21 (11.5)	22 (11.5)
Viral pneumonia	15 (8.2)	19 (9.9)
Lung involvement by the underlying disease	15 (8.2)	21 (11)
Drug-related pulmonary toxicity	9 (4.9)	10 (5.2)
Invasive pulmonary aspergillosis	4 (2.2)	6 (3.1)
Cardiogenic pulmonary edema	2 (1.1)	7 (3.6)
ARDS (extrapulmonary causes)	12 (6.6)	11 (5.6)
Diffuse intra-alveolar hemorrhage	2 (1.1)	0 (0)
Other identified causes ^c	9 (4.9)	2 (2.1)
No identified cause	11 (6)	6 (4.2)

Table 3. Primary and Secondary End Points

	Oxygen Alone (n = 183)	Noninvasive Ventilation (n = 191)	Absolute Difference (95% CI)	P Value
Primary End Point				
All cause 28-d mortality, No. (%)	50 (27.3)	46 (24.1)	-3.2 (-12.1 to 5.6)	.47
Secondary End Points				
Need for invasive mechanical ventilation, No. (%)	82 (44.8)	73 (38.2)	-6.6 (-16.6 to 3.4)	.20
SOFA on day 3, median (IQR)	4 (2-6)	4 (2-5)	-0.5 (-1.2 to 0.3)	.17
ICU-acquired infection, No. (%)	46 (25.1)	48 (25.1)	0 (-8.8 to 8.8)	.99
Length of ICU stay, median (IQR), d	7 (3-16)	6 (3-16)	-0.3 (-3.2 to 2.6)	.55
Duration of mechanical ventilation, median (IQR), d	14 (6-33)	17 (6-38)	0.3 (-5.7 to 6.3)	.70
Length of hospital stay, median (IQR), d	22 (14-42)	24 (12-43)	0.3 (-5 to 5.5)	.99
Mortality at 6 mo, No. (%) ^a	82/181 (45.3)	72/182 (39.6)	-5.7 (-16.4 to 3.9)	.23
Good performance status in 6-mo survivors, No. (%) ^b	70/75 (93.3)	85/91 (93.4)	-0.1 (-7.7 to 7.5)	.98

Figure 2. Probability of Survival at Day 28

No. at risk

Probability of survival and subgroup analyses of the risk of day-28 mortality Kaplan-Meier estimates of the probability of day-28 mortality in immunocompromised patients with acute respiratory failure receiving either early noninvasive ventilation or oxygen only. Statistical test used the log-rank test.

Dans notre expérience

Tableau 3

Résultats des études réalisées sur les techniques de support vital.

Technique	Années de recrutement et référence	N patients	Survie hospitalière	Facteurs prédictifs survie hospitalière
Réanimation cardiorespiratoire	1985-1992 ⁷	49	10 %	
Ventilation mécanique invasive (VMI)	1985-19978	168	17 %	IGS II Leucopénie
Ventilation non invasive (VNI)	2000-2001 ⁹	40	42,5 %	
VMI à l'ère VNI	2000-200711	164	24 %	VMI après échec VNI Leucopénie Bilirubinémie
Epuration extra-rénale (1)	1997-200215	32	47 %	Nombre organes défaillants
Epuration extra-rénale (2)	2003-2012 ¹⁶	103	37 %	Nombre organes défaillants Hypoalbuminémie

IGS II : indice de gravité simplifié II ; VMI : ventilation mécanique invasive ; VNI : ventilation non invasive

Meert, 2005 (2 x 47 patients pairés)

	В		
Résultats	VNI	VMI	p
Durée ventilation (jour) -médiane (intervalle)	3 (1-26)	10 (0-47)	0,001
Durée hospitalisation USI (jours) -médiane (intervalle)	9 (1-42)	16 (1-91)	0,01
Sortie USI	26 (55,3%)	13 (27,6%)	0,01
Sortie hôpital	23 (48,9%)	11 (23,4%)	0,08

Carra crosses					
Sous-groupe	VNI		VMI		p
	N pts	% sorties	N pts	% sorties	
Tumeurs solides	29	69	28	28,6	0,02
Hémopathies malignes	18	33,3	19	26,3	0,63
Patients leucopéniques	10	10,0	10	20,0	1
Patients non leucopéniques	37	67,5	37	29,7	0,004
Allo-greffés	9	22,2	9	22,2	1
Non allo-greffés	38	63,1	38	28,9	0,004
IRA hypoxémiques	34	47,0	34	20,6	0,02
IRA hypercapniques	10	90	10	40,0	0,13
ОРН	3	66,6	3	66,6	NA
Pairés avec contrôles avant 1996	26	61,5	26	11,5	0,004
Pairés avec contrôles après 1996	21	47,6	21	47,9	1

Invasive mechanical ventilation in cancer patients. Prior non invasive ventilation is a poor prognostic factor

A.P. Meert, T. Berghmans, E. Markiewicz, M. Hardy, N. Nayer, M. Paesmans, J.P. Sculier

Département de Soins Intensifs et Oncologie Thoracique et Data Centre, Institut Jules Bordet, Centre des tumeurs de l'Université Libre de Bruxelles (ULB), Bruxelles, Belgium

Table 5. Multivariate analysis of variables predicting hospital discharge

Variable		OR (95% CI)	p-value
NIV before IMV vs. immediate IMV	Yes vs. no	0.30 (0.09-0.95)	0.04
Leukopenia	Yes vs. no	0.21 (0.06-0.77)	0.02
Serum bilirubin	≥ 1.1 vs. <1.1 mg/dl	0.38 (0.16-0.94)	0.04

Recommandations

- Bien qu'il n'y ait pas de données spécifiques disponibles sur les patients cancéreux, la VNI doit être administrée aux patients cancéreux présentant un œdème pulmonaire cardiaque ou une exacerbation d'une maladie pulmonaire obstructive chronique (avec acidose respiratoire) (Grade B, forte recommandation).
- La VNI ne doit probablement pas être initiée chez les patients cancéreux admis en réanimation avec insuffisance respiratoire aiguë (sauf exacerbation d'une maladie pulmonaire obstructive chronique ou d'un œdème cardiaque pulmonaire). C'est plus particulièrement le cas chez les patients présentant une insuffisance respiratoire sévère (polypnée, syndrome de détresse respiratoire aiguë (SDRA), hypoxie sévère), un choc septique, une insuffisance respiratoire associée à d'autres défaillances d'organes (altération du niveau de conscience, besoin de vasopresseurs, thérapie d'épuration rénale) et une admission retardée aux soins intensifs (Grade B, forte recommandation).
- Cependant, si la VNI est démarrée, le patient doit être admis aux soins intensifs pour permettre une surveillance étroite et des réévaluations fréquentes de son efficacité. L'intubation ne doit pas être retardée en l'absence d'amélioration rapide (Avis d'expert, recommandation forte).

4. Ventilation mécanique invasive (VMI)

La VMI apparaissant comme la dernière option thérapeutique en cas d'aggravation clinique sévère, il est difficile d'évaluer sa pertinence pour des raisons éthiques évidentes.

Cependant, il semble que l'intubation retardée (après VNI d'échec d'OHD) soit associée à de moins bons résultats. L'absence de diagnostic de l'insuffisance respiratoire aiguë est également associée au pire résultat.

Le bénéfice d'une intubation plus précoce des patients avec un diagnostic inconnu pour effectuer la procédure de diagnostic la plus complète (y compris un accès facile à la tomodensitométrie et au lavage bronchoalvéolaire) reste à déterminer.

Tableau 3

Résultats des études réalisées sur les techniques de support vital.

Technique	Années de recrutement et référence	N patients	Survie hospitalière	Facteurs prédictifs survie hospitalière
Réanimation cardiorespiratoire	1985-1992 ⁷	49	10 %	
Ventilation mécanique invasive (VMI)	1985-1997 ⁸	168	17 %	IGS II Leucopénie
Ventilation non invasive (VNI)	2000-2001 ⁹	40	42,5 %	
VMI à l'ère VNI	2000-2007 ¹¹	164	24 %	VMI après échec VNI Leucopénie Bilirubinémie
Epuration extra-rénale (1)	1997-200215	32	47 %	Nombre organes défaillants
Epuration extra-rénale (2)	2003-2012 ¹⁶	103	37 %	Nombre organes défaillants Hypoalbuminémie

IGS II : indice de gravité simplifié II ; VMI : ventilation mécanique invasive ; VNI : ventilation non invasive

Les résultats avant l'ère de la VNI

Sculier JP et al:

La ventilation artificielle chez les patients atteints de cancer.

Rev Mal Respir 2001; 18(2):137-154.

Le pronostic en résumé

Type de population	Nombre Nombre de		Taux de succès
	d'études	patients ventilés	(médiane)
Tout cancéreux	15	10 - 782	4 – 71% (18%)
Tumeurs solides	7	22 - 627	25 – 93% (31%)
Hémopathies malignes	7	17 - 67	8 – 35% (27%)
Greffes de moelle	11	16 - 60	4 – 19% (9%)

L'expérience de l'Institut Bordet (avant la VNI)

Support Care Cancer (2003) 11:236–241 DOI 10.1007/s00520-002-0436-2

ORIGINAL ARTICLE

F. Vallot M. Paesmans T. Berghmans J. P. Sculier Leucopenia is an independent predictor in cancer patients requiring invasive mechanical ventilation: a prognostic factor analysis in a series of 168 patients

Table 1 Patients characteristics

Variable		n	%
Total number of patients		168	-
Demographic variables			
Age	Median (years)	56	_
5-	Range	21-86	-
Sex	Male	82	49
	Female	86	51
Cancer-related variables			
Type of tumour	Solid	104	62
••	Haematological	64	38
Cancer status	Complete response	7	4
	Partial response	19	11
	Stable disease	14	8
	Progression	93	55
	Induction treatment	35	21
Cancer phase	Diagnosis	5	3
	Curative	56	33
	Control	87	52
	Pivotal	19	11
	Palliative	1	0.5
Cancer evolution duration	Median (months)	14.5	_
	Range	(0-244)	-
Bone marrow graft	No	146	87
	Autologous	12	7
	Allogeneic	10	6
Complications-related variables			
APACHE II score	Median	20	
	Range	3-43	_
SAPS II score	Median	43	-
	Range	16-93	-
Admission for	Mechanical ventilation	98	58
	Other reason	70	42
Renal failure	Yes	102	61
	No	66	39
Shock	Yes	95	60
	No	73	40
Leukocyte count	<1000/mm ³	44	26
	>1000/mm ³	124	74
Platelet count	<50,000/mm ³	58	35
	>50,000/mm ³	110	65

 Table 2
 Outcomes results

Duration of mechanical ventilation	
Median Range	111–183
Weaning from mechanical ventilation	43 (26%)
Discharge from ICU	37 (22%)
Duration of ICU stay	
Median	16
Range	1–244
Discharge from hospital	29 (17%)

Table 3 Univariate prognostic factors analyses for weaning, ICU mortality and hospital mortality

Variables		Wea	ning	ICU	mortality	Hospital mortality	
		%	\overline{P}	%	P	%	P
Sex	Male Female	23 28	0.60	80 76	0.56	82 82	1
Age (years)	<60 >60	26 25	0.94	76 80	0.62	80 85	0.55
Cancer duration (months)	<14.5 >14.5	21 30	0.29	83 73	0.14	88 77	0.1
Bone marrow graft	Yes No	27 18	0.60	77 82	0.79	82% 86	0.86
SAPS II score	<43 >43	31 19	0.11	73 83	0.19	79 86	0.28
APACHE II score	<20 >20	32 19	0.08	74 82	0.25	79 86	0.35
Leucopenia	Yes No	14 30	0.04	89 74	0.06	93 79	0.06
Thrombopenia	Yes No	17 30	0.09	83 75	0.37	87 80	0.28
Shock	Yes No	19 31	0.11	85 73	0.06	78 87	0.20
Renal failure	Yes No	21 28	0.39	83 74	0.25	81 84	0.71
Cancer phase	Diagnosis-curative Other	28 24	0.74	77 78	0.98	80 84	0.68
Cancer status	Remission Other	31 26	0.76	73 78	0.61	76 83	0.60
Admission cause	Mechanical ventilation Other	23 30	0.41	80 75	0.48	83 86	0.92
Tumour type	Solid Haematological	26 25	1	80 75	0.59	85 78	0.30

Table 4 Multivariate analyses of prognostic factor for weaning, ICU mortality and hospital mortality (n=159)

Variables	Weaninga		ICU mortality ^b			Hospital mortality ^c			
	OR	95% CI	P	OR	95% CI	P	OR	95% CI	P
Leucopenia (ref=no)	0.35	0.14-0.89	0.03	0.42	0.15-1.20	0.09	0.23	0.06-0.83	0.03
Shock (ref=yes)	-	_	-	2.04	0.90 - 4.63	0.08	-	_	-
Cancer evolution duration (ref=>14.5 months)	_	_	-	0.49	0.22 - 1.07	0.07	0.46	0.19 - 1.12	0.09
Type of tumour (ref=haemalogical malignancies)	-	_	-	-	_	_	0.45	0.19 - 1.07	0.07

La VMI à l'ère de la VNI

Journal of EUON 16: 160-165, 2011
© 2011 Zerbinis Medical Publications, Printed in Greece

ORIGINAL ARTICLE

Invasive mechanical ventilation in cancer patients. Prior non invasive ventilation is a poor prognostic factor

- IJB: janvier 2000 à décembre 2007
- 164 patients:
 - VMI d'emblée : 123
 - VMI puis VNI: 41

Table 1. Patient characteristics on admission

Characteristics	Whole group	NIV followed by IMV	IMV alone	p-value
Number of patients	164	41	123	
Median age, years (range)	57 (19-81)	49 (23-78)	59 (20-81)	0.008
Gender				0.86
Male, n	95	23	72	
Female, n	69	18	51	
Median SAPS II score (range)	53 (23-94)	56 (23-83)	47 (30-94)	0.002
Type of malignancy, n (%)				< 0.001
Solid tumor	106 (64.6)	16 (39.0)	90 (73.2)	
Haematological malignancy	58 (35.4)	25 (61.0)	33 (26.8)	
Bone marrow /Peripheral blood	37 (63.8)	19 (76.0)	18 (54.5)	< 0.001
stem cell transplantation, n (%)				
Cancer phase* (1,2 vs. 3,4), n (%)				0.006
Phase 1	5 (3.0)	1 (2.4)	4 (3.2)	
Phase 2	60 (36.6)	23 (56.1)	37 (30.1)	
Phase 3	89 (54.3)	17 (41.5)	72 (58.5)	
Phase 4	10 (6.1)	0 (0.0)	10 (8.1)	
Leukopenia at admission, n (%)	40 (24.4)	13 (31.7)	27 (21.9)	0.22
Median PaO ₂ /FiO ₂ ratio (range)	215 (46-590)	183 (52-407)	230 (46-590)	0.02

^{*}Cancer phase: 1= diagnostic, 2= curative, 3= controllable but no longer curable, 4= pivotal. IMV= invasive mechanical ventilation, NIV= non invasive ventilation

Table 2. Reasons for admission to the intensive care unit

Reasons for admission	Whole group (n=164) %	NIV followed by IMV (n=41) %	IMV alone (n=123) %
Respiratory failure	35.3	63.4	26.0
Sepsis/shock	21.3	14.6	23.5
Neurologic disease	12.1	4.8	14.6
Abdominal pathology	10.3	12.1	9.7
Heart disease	7.9	2.4	9.7
Cardiopulmonary resuscitation	7.3	0.0	9.7
Acute renal failure	4.8	2.4	5.7
Other	0.6	0.0	0.8

Table 3. Complications leading to ventilation

Complications	Whole group	NIV followed by IMV	IMV alone
	(n=164) %	(n=41) %	(n=123) %
Sepsis/shock	34.7	34.1	34.9
Respiratory failure	33.5	56.1	24.3
Cardiopulmonary resuscitation	15.8	_	21.0
Neurologic disease	10.3	4.8	12.1
Heart disease	3.6	_	4.8
Other	1.8	_	2.4

Résultats

	Total	VMI après VNI	VMI d'emblée
Sevrage VM	35%	21,9%	39,8%
Sortie USI	28%	11,1%	31,7%
Sortie hôpital	24%	9,8%	27,6%

$$p = 0.02$$

Table 5. Multivariate analysis of variables predicting hospital discharge

Variable		OR (95% CI)	p-value
NIV before IMV vs. immediate IMV	Yes vs. no	0.30 (0.09-0.95)	0.04
Leukopenia	Yes vs. no	0.21 (0.06-0.77)	0.02
Serum bilirubin	\geq 1.1 vs. \leq 1.1 mg/dl	0.38 (0.16-0.94)	0.04

L'intubation retardée (après VNI d'échec d'OHD) est associée à de moins bons résultats

Journal of Critical Care 38 (2017) 295-299

Noninvasive ventilation during acute respiratory distress syndrome in patients with cancer: Trends in use and outcome

A. Neuschwander, MD^a, V. Lemiale, MD^a, M. Darmon, PhD^b, F. Pène, PhD^c, A. Kouatchet, MD^d, P. Perez, MD^e, F. Vincent, MD^f, J. Mayaux, MD^g, D. Benoit, PhD^h, F. Bruneel, MDⁱ, A.P. Meert, PhD^j, M. Nyunga, MD^k, A. Rabbat, MD^l, D. Mokart, PhD^m, E. Azoulay, PhD^{a,*},

A Groupe de Recherche en Réanimation Respiratoire en Onco-Hématologie (GRRR-OH) study:

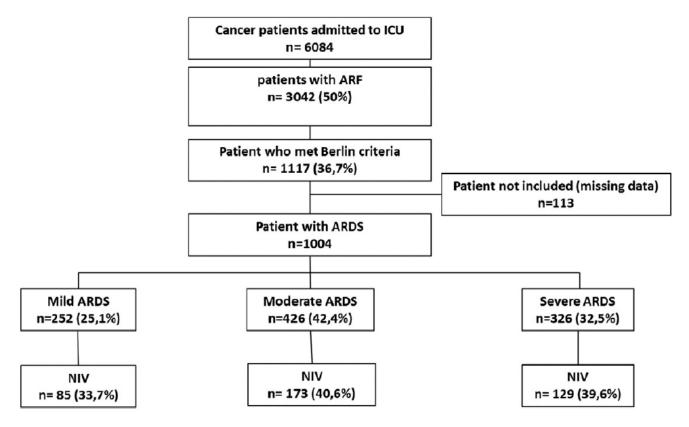


Fig. 2. Flowchart.

1004 cas en 20 ans

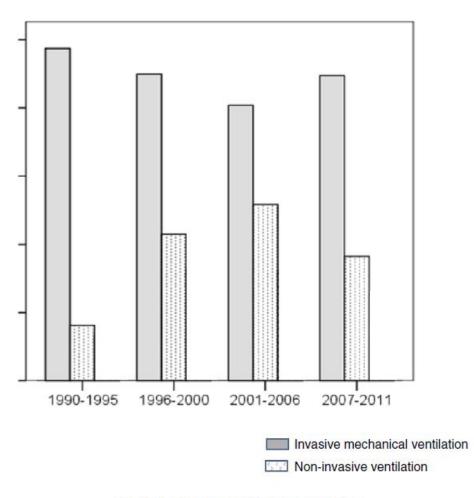


Fig. 1. Noninvasive ventilation use over time.

Table 1Patients characteristics according to ventilation strategy

Variables	Patients who never receive NIV (n = 617)	Patient who receive NIV (n = 387)	P
Baseline characteristics			
Age (y), median [IQR]	58 [48-67]	57 [46-67]	.31
Sex, male	393 (63.7)	249 (64.3)	.88
Underlying disease			<.001
Hematologic malignancy	495 (80.2)	364 (94)	
Acute leukemia	171 (27.7)	127 (32.8)	
Non-Hodgkin lymphoma	189 (30.6)	129 (33.3)	
Myeloma	76 (12.3	37 (9.6)	
Solid tumor	122 (19.7)	23 (5.9)	
Allogenic stem cell transplantation	55 (8.9)	60 (15.5)	.002
ARDS etiology			
Pulmonary Infection	379 (61.4)	283 (73.1)	.002
Extrapulmonary infection	170 (27.5)	55 (14.2)	<.001
Fungus	195 (31.6)	98 (25.3)	.005
Pneumocystis	16 (2.6)	48 (12.4)	<.001
Undetermined	15 (2.4)	26 (6.7)	.003
Neutropenia recovery	288 (46.7)	156 (40.3)	.056
SOFAc J1	9 [7-11]	7 [4-9]	<.001
Shock	502 (81.4)	229 (59.1)	<.001
Acute kidney failure	219 (35.5)	87 (22.5)	<.001
Severity of ARDS			
Mild	167 (27)	85 (21.9)	.18
Moderate	253 (41)	173 (44.7)	
Severe	197 (31.9)	129 (33.3)	
Outcome			
ICU mortality	394 (63.8)	171 (44.1)	<.001
Hospital mortality	427 (69.2)	213 (55.0)	<.001

SOFAc indicates SOFA score without respiratory parameter.

Table 2Patients characteristics according to NIV failure

Variables	NIV success (n = 111)	NIV failure (n = 276)	P
Baseline characteristics			
Age (y), median (IQR]	56 [46-65]	57 [46-67]	.40
Sex, male	46 (41.4)	92 (33.3)	.17
Underlying disease			.32
Hematologic malignancy	107 (96.9)	257 (93.1)	
Solid tumor	4 (3.6)	19 (6.8)	
Allogenic stem cell transplantation	22 (19.8)	38 (13.8)	.18
ARDS etiology			
Pulmonary Infection	74 (66.6)	209 (75.7)	.09
Extrapulmonary infection	20 (18.1)	35 (12.7)	.20
Fungus	19 (17.1)	79 (28.6)	.02
Pneumocystis	23 (20.7)	25 (9.1)	.003
Undetermined	11 (0.09)	15 (0.05)	.11
Neutropenia recovery	34 (30.6)	122 (44.2)	.019
SOFAc J1, median (IQR]	7 [3-8]	8 [5-10]	<.001
Shock	21 (18.9)	208 (75.4)	<.001
Acute kidney failure	2 (1.8)	85 (30.8)	<.001
Severity of ARDS			
Mild	31 (27.9)	54 (19.6)	.13
Moderate	53 (47.8)	120 (43.4)	
Severe	27 (24.3)	102 (36.9)	

SOFAc indicates SOFA score without respiratory parameter.

Table 3Factors associated with NIV failure

	OR (95% CI)	P
Sex, male	0.66 (0.41-1.07)	.053
Mild ARDS	1	Reference
Moderate ARDS	1.28 (0.73-2.28)	.28
Severe ARDS	2.08 (1.10-3.93)	.02
SOFAc	1.15 (1.08-1.23)	<.001
Pulmonary infection-related ARDS	1.77 (1.06-2.98)	.03
Fungal infection	1.90 (1.06-3.41)	.03

SOFAc indicated SOFA score without respiratory parameter.

Table 4
Factors associated with hospital mortality

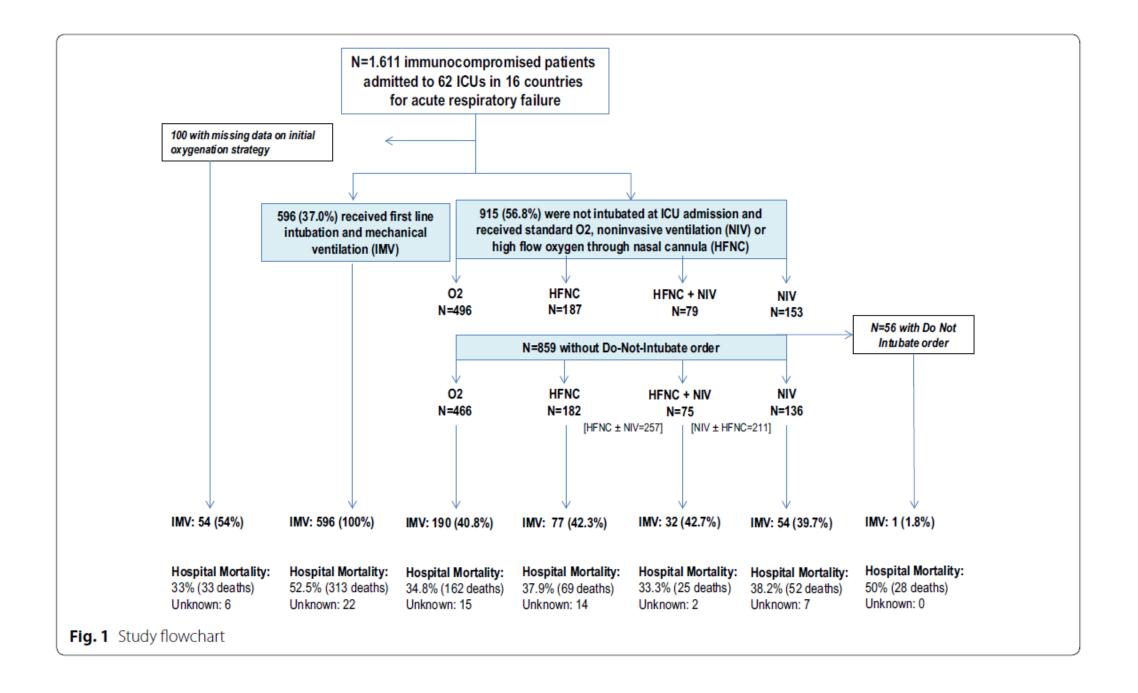
	OR (95% CI)	P
Solid tumor (vs hematologic malignancy)	0.45 (0.19-1.09)	.08
Mild ARDS	1	
Moderate ARDS	0.92 (0.53-1.60)	.77
Severe ARDS	1.99 (1.09-4.28)	.02
SOFAc	1.11 (1.04-1.19)	.001
NIV failure	2.63 (1.63-4.28)	<.001
Extrapulmonary infection	1.78 (0.94-3.37)	.08

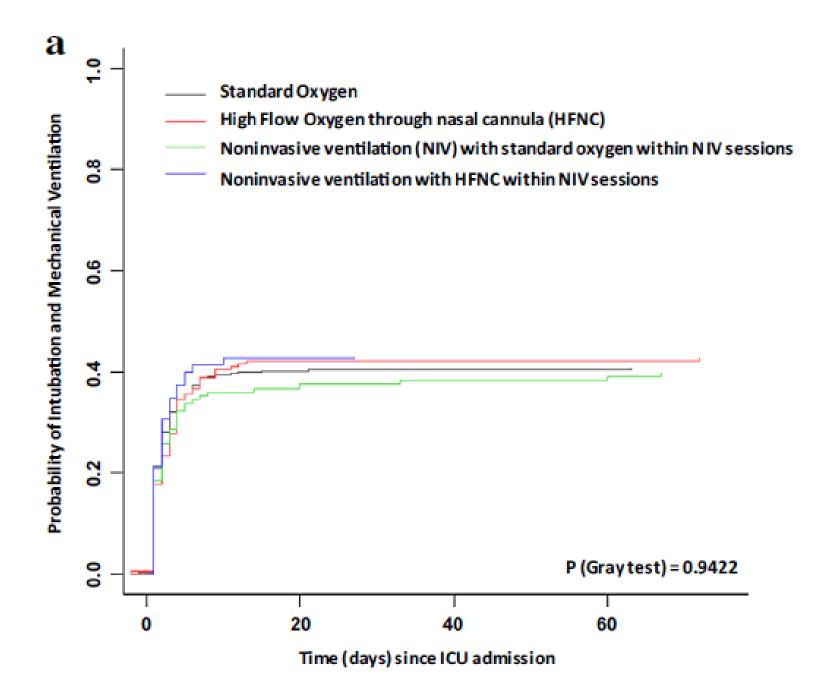
SOFAc indicates SOFA score without respiratory parameter.

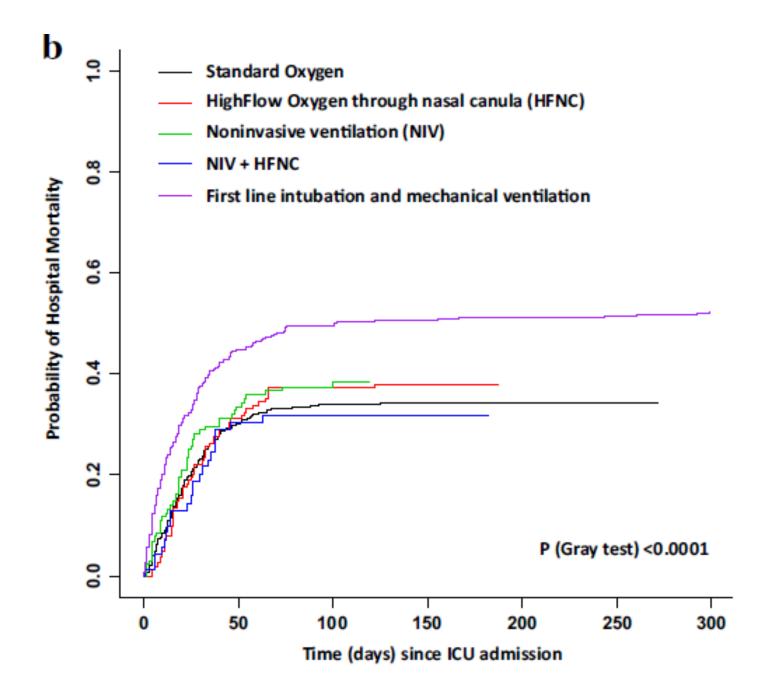
Conclusion

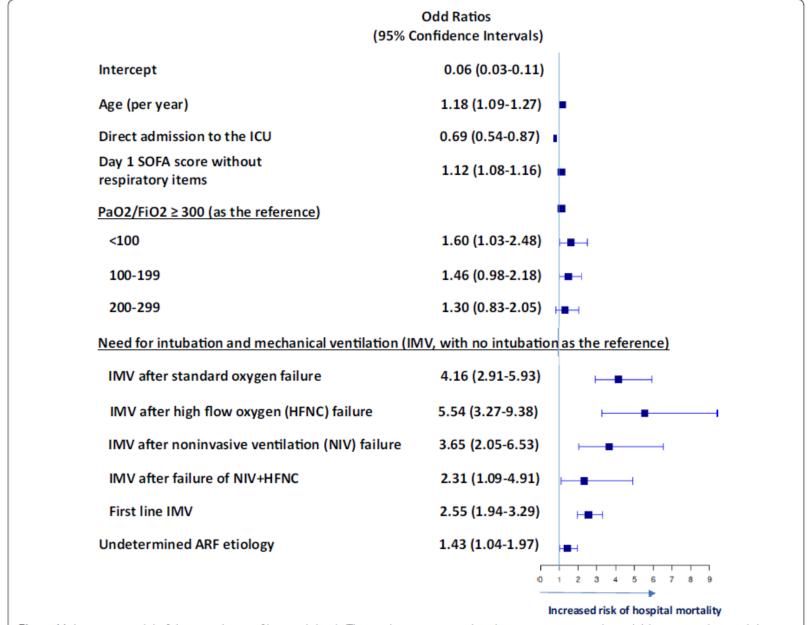
L'échec de ventilation non invasive chez les patients atteints de SDRA avec une tumeur maligne est fréquent et lié à la gravité du SDRA, au score SOFA et au SDRA lié à une infection pulmonaire.

L'échec de la ventilation non invasive est associé à la mortalité hospitalière.


L'absence de diagnostic de l'insuffisance respiratoire aiguë est également associée à de moins bons résultats


Intensive Care Med (2017) 43:1808–1819 DOI 10.1007/s00134-017-4947-1


SEVEN-DAY PROFILE PUBLICATION


Acute hypoxemic respiratory failure in immunocompromised patients: the Efraim multinational prospective cohort study

Elie Azoulay^{1*}, Peter Pickkers², Marcio Soares³, Anders Perner⁴, Jordi Rello⁵, Philippe R. Bauer⁶, Andry van de Louw⁷, Pleun Hemelaar², Virginie Lemiale¹, Fabio Silvio Taccone⁸, Ignacio Martin Loeches^{9,10}, Tine Sylvest Meyhoff⁴, Jorge Salluh³, Peter Schellongowski¹¹, Katerina Rusinova¹², Nicolas Terzi¹³, Sangeeta Mehta¹⁴, Massimo Antonelli¹⁵, Achille Kouatchet¹⁶, Andreas Barratt-Due¹⁷, Miia Valkonen¹⁸, Precious Pearl Landburg¹⁹, Fabrice Bruneel²⁰, Ramin Brandt Bukan²¹, Frédéric Pène²², Victoria Metaxa²³, Anne Sophie Moreau²⁴, Virginie Souppart¹, Gaston Burghi²⁵, Christophe Girault²⁶, Ulysses V. A. Silva²⁷, Luca Montini¹⁵, François Barbier²⁸, Lene B. Nielsen^{29,30}, Benjamin Gaborit³¹, Djamel Mokart³² and Sylvie Chevret³³ for the Efraim investigators and the Nine-I study group

Fig. 4 Multivariate model of the prevalence of hospital death. This analysis is restricted to the 1545 patients with available status at hospital discharge. Plots report variables independently associated with hospital mortality in the final model, with their 95% confidence intervals

Table 3 Association between acute respiratory failure etiologies and hospital mortality

Numbers (%) or median (IQR)	Patients discharged alive from the hospital, $N = 863 (55.8\%)$	Patients who died before hospital discharge, $N = 682 (44.2\%)$	P value
Bacterial infection			0.27
Clinically documented	125 (14.5%)	84 (12.3%)	
Microbiologically documented	129 (14.9%)	118 (17.3%)	
Viral infection			
Influenza	86 (10.0%)	66 (9.7%)	0.92
Other viruses	138 (16.0%)	106 (15.5%)	0.87
Septic shock from extrathoracic source	81 (9.4%)	68 (10.0%)	0.76
Invasive fungal infection (IFI)			
Proven or probable invasive pulmonary aspergillosis (IPA)	30 (3.5%)	31 (4.5%)	0.35
Pneumocystis jirovecii pneumonia	34 (3.9%)	35 (5.1%)	0.32
Candidemia with septic shock	15 (1.7)	21 (3.1%)	0.12
All IFI cases including other fungi and possible cases of IPA	105 (12.2%)	121 (17.7%)	0.003
Aspiration pneumonia	38 (4.4%)	31 (4.5%)	0.99
Airway-related disorders	38 (4.4%)	16 (2.3%)	0.04
Drug-related pulmonary toxicity	34 (3.9%)	19 (2.8%)	0.27
Disease-related infiltrates	69 (8.0%)	73 (10.7%)	0.08
Cardiogenic pulmonary edema	66 (7.6%)	33 (4.8%)	0.03
Undetermined	94 (10.9%)	105 (15.4%)	0.01
More than one ARF etiology	125 (14.5%)	105 (15.4%)	0.67

Conclusion

L'oxygénothérapie a un effet sur l'intubation mais pas sur les taux de mortalité.

L'incapacité à identifier l'étiologie de l'IRespA est associée à des taux plus élevés d'intubation et de mortalité.

Cela suggère qu'en plus de sélectionner le dispositif d'oxygénation approprié, les cliniciens devraient s'efforcer d'identifier l'étiologie de l'IRespA.

Le bénéfice d'une intubation plus précoce des patients avec un diagnostic inconnu pour effectuer la procédure de diagnostic la plus complète reste à déterminer

Diagnosis and outcome of acute respiratory failure in immunocompromised patients after bronchoscopy

Philippe R. Bauer¹, Sylvie Chevret², Hemang Yadav¹, Sangeeta Mehta³, Peter Pickkers⁴, Ramin B. Bukan⁵, Jordi Rello⁶, Andry van de Louw⁷, Kada Klouche⁸, Anne-Pascale Meert⁹, Ignacio Martin-Loeches^{10,11}, Brian Marsh¹², Lorenzo Socias Crespi¹³, Gabriel Moreno-Gonzalez¹⁴, Nina Buchtele¹⁵, Karin Amrein¹⁶, Martin Balik¹⁷, Massimo Antonelli¹⁸, Martine Nyunga¹⁹, Andreas Barratt-Due²⁰, Dennis C.J.J. Bergmans²¹, Angélique M.E. Spoelstra-de Man²², Anne Kuitunen²³, Florent Wallet²⁴, Amelie Seguin²⁵, Victoria Metaxa²⁶, Virginie Lemiale²⁷, Gaston Burghi²⁸, Alexandre Demoule²⁹, Thomas Karvunidis³⁰, Antonella Cotoia³¹, Pål Klepstad³², Ann M. Møller³³, Djamel Mokart³⁴ and Elie Azoulay²⁷ for the Efraim investigators and the Nine-I study group³⁵

@ERSpublications

In a pre-planned analysis of immunocompromised critically ill patients with acute respiratory failure, bronchoscopy was associated with better diagnosis and management but worse outcome. The decision to perform bronchoscopy should be individualised. http://bit.ly/2Dusahh

Cite this article as: Bauer PR, Chevret S, Yadav H, *et al.* Diagnosis and outcome of acute respiratory failure in immunocompromised patients after bronchoscopy. *Eur Respir J* 2019; 54: 1802442 [https://doi.org/10.1183/13993003.02442-2018].

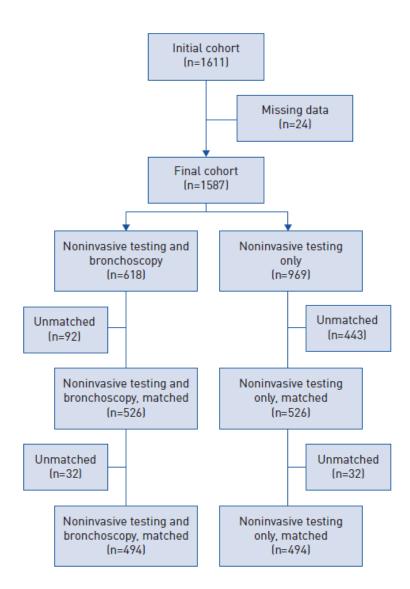


FIGURE 1 Study flowchart with initial matching (n=526) and subsequent matching (n=494) adding the variables "bronchoscopy prior to intensive care unit admission", "goal of care discussion" and "disease stage status".

TABLE 1 Characteristics of patients according to diagnostic group

	NIT-FOB		NIT		p-value	
	n	Statistics	n	Statistics		
Subjects	618		969			
Sex						
Male	356	58.3	583	60.4	0.43	
Female	255	41.7	382	39.6		
Age years	587	62.3 (53.3-69.9)	927	64.7 (55.2-72.4)	0.0009	
Height cm	588	170 (162-175)	889	170 (163-177)	0.073	
Weight kg	610	73 (62-84)	922	72 (62-85)	0.63	
Duration of symptoms days	586	2 (0-6)	936	1 (0-3)	< 0.0001	
Location before ICU						
Emergency room	93	16.3	251	27.5	< 0.0001	
Ward	347	61.0	505	55.3		
Other	129	22.7	157	17.2		
Same day ICU admission	160	26.4	355	37.0	< 0.0001	
SOFA score on admission	615	8 (4-10.5)	960	7 (4-10)	0.0009	
Duration of disease days	344	166 (21-593)	595	113 (11-728)	0.34	
Haematological malignancy any	346	56.0	482	49.7	0.017	
Haematopoietic stem cell transplant						
Autologous	44	7.1	56	5.8	< 0.0001	
Allogeneic	82	13.3	69	7.1		
Systemic disease	124	20.1	153	15.8	0.034	
Solid organ tumour	168	27.2	382	39.4	< 0.0001	
Solid organ transplant	78	14.1	63	7.3	< 0.0001	
Corticosteroid use	495	0 (0-22)	802	0 (0-15)	0.006	
Neutropenia	95	16.4	154	16.4	1.00	

Data are presented as % or median (interquartile range), unless otherwise stated. NIT-FOB: noninvasive testing coupled with fibreoptic bronchoscopy; NIT: noninvasive testing only; ICU: intensive care unit; SOFA: Sequential Organ Failure Assessment.

TABLE 2 Causes and diagnosis yield of acute respiratory failure according to diagnostic group

	Total	NIT-FOB	NIT	p-value
Subjects	1587	618	969	
Infectious	938 (59)	421 (68)	517 (53)	< 0.0001
Pneumocystis jirovecii	69 (4)	48 (8)	21 (2)	< 0.0001
Noninfectious#	440 (28)	112 (18)	328 (34)	< 0.0001
Diagnosis				
Identified on admission	825 (52)	263 (43)	562 (58)	< 0.0001
Identified with noninvasive testing	318 (20)	135 (22)	283 (29)	0.0125
Identified with bronchoscopy alone	167 (11)	167 (27)		
Unidentified	209 (13)	85 (14)	124 (13)	0.595

Data are presented as n or n (%), unless otherwise stated. NIT-FOB: noninvasive testing coupled with fibreoptic bronchoscopy; NIT: noninvasive testing only. #: excluding those with unknown diagnosis.

TABLE 3 Outcome according to diagnostic group

		NIT-FOB	FOB NIT		p-value
	n	Statistics	n	Statistics	
Subjects	618		969		
Intubation	533	86.3	446	46.0	< 0.0001
Timing of intubation					
0-48 h	410	66.3	370	38.2	< 0.0001
>48 h	123	19.9	76	7.8	
Length of ventilation days	351	7 (3-12)	304	3 (1-8)	< 0.0001
Goal of care on admission					
Full code	522	84.5	723	74.6	< 0.0001
ICU trial	20	3.2	49	5.1	
Early ICU	11	1.8	17	1.8	
DNI	3	0.5	55	5.7	
DNR	10	1.6	44	4.5	
None/unknown	52	8.4	81	8.4	
Fluids expansion on day 1 mL	554	1500 (500-3000)	873	1170 (300-2500)	0.0007
Vasopressors days 1-7	455	73.6	467	48.2	< 0.0001
Low-dose steroids days 1-7	221	39.0	287	33.0	0.023
High-dose steroids days 1-7	162	28.2	169	19.0	< 0.0001
Septic shock days 1-7	329	53.2	349	36.0	< 0.0001
Dialysis days 1-7	142	23.0	153	15.8	0.0004
End-of-life decision					
None	421	68.1	731	75.4	0.0004
No escalation	60	9.7	79	8.2	
Withholding	33	5.3	62	6.4	
Withdrawing	104	16.8	97	10.0	
ICU length of stay days	598	11 (6-19)	955	5 (2-9)	< 0.0001
Hospital length of stay days	511	28 (16-49)	835	18 (9-34)	< 0.0001
ICU mortality	248	40.1	267	27.6	< 0.0001
Hospital mortality	294	49	378	41	0.003
90-day mortality	325	60.5	436	53.7	0.016

Data are presented as % or median (interquartile range), unless otherwise stated. NIT-FOB: noninvasive testing coupled with fibreoptic bronchoscopy; NIT: noninvasive testing only; ICU: intensive care unit; DNI: do not intubate; DNR: do not resuscitate.

Score de propensité

Après l'appariement des scores de propension, la bronchoscopie restait associée à un risque accru de mortalité hospitalière (OR 1,41, IC à 95 % 1,08-1,81).

Recommandations

- La VMI étant initiée en cas d'échec d'autres techniques de ventilation moins invasives, il est impossible de formuler une recommandation sur l'initiation de la VMI (Avis d'expert, recommandation forte).
- L'intubation et la VMI ne doivent pas être retardées en l'absence d'amélioration clinique rapide avec l'OHD ou la VNI ou pour réaliser des actes diagnostiques si nécessaire (Grade C, recommandation forte).

5. Oxygénation Membranaire Extra-Corporelle (ECMO)

La conférence de consensus a identifié six études rétrospectives avec des échantillons de petite taille ayant évalué la ECMO veino-veineuse chez des patients cancéreux. Ces études ont montré une mortalité élevée à court terme qui dépassait la mortalité rapportée chez les patients sans cancer. Les patients atteints d'hémopathies malignes semblaient avoir de moins bons résultats.

ORIGINAL ARTICLE

Six-Month Outcome of Immunocompromised Patients with Severe Acute Respiratory Distress Syndrome Rescued by Extracorporeal Membrane Oxygenation

An International Multicenter Retrospective Study

Matthieu Schmidt^{1,2}, Peter Schellongowski³, Nicolò Patroniti⁴, Fabio Silvio Taccone⁵, Dinis Reis Miranda⁶, Jean Reuter⁷, Helène Prodanovic⁸, Marc Pierrot⁹, Amandine Dorget², Sunghoon Park¹⁰, Martin Balik¹¹, Alexandre Demoule⁸, Ilaria Alice Crippa⁵, Alain Mercat⁹, Philipp Wohlfarth³, Romain Sonneville⁷, and Alain Combes^{1,2}; for the International ECMO Network (ECMONet), the REVA Research Network, and the IDEA Study Group

¹Sorbonne Universités, UPMC University Paris 06, INSERM UMRS_1166, Institute of Cardiometabolism and Nutrition, Paris, France; ²Medical Intensive Care Unit, Hôpital de la Pitié—Salpêtrière, Assistance Publique—Hôpitaux de Paris (AP-HP), Paris, France; ³Department of Medicine I, Intensive Care Unit 13i2, Medical University of Vienna, Vienna, Austria; ⁴School of Medicine and Surgery, University of Milan-Bicocca, Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy; ⁵Department of Intensive Care, Hôpital Erasme—Université Libre de Bruxelles, Brussels, Belgium; ⁶Department of Intensive Care, Erasmus MC—University Medical Center, Rotterdam, the Netherlands; ⁷AP-HP, Bichat Hospital, Medical and Infectious Diseases Intensive Care Unit, Paris Diderot University, Sorbonne Paris Cité, INSERM/Paris Diderot University, Paris, France; ⁸Sorbonne Universités, UPMC University Paris 06, INSERM, UMRS_1158 Neurophysiologie Respiratoire Expérimentale et Clinique, AP-HP, Groupe Hospitalier Pitié-Salpêtrière Charles Foix, Service de Pneumologie et Réanimation Médicale (Département "R3S"), Paris, France; ⁹Service de Réanimation Médicale, Centre Hospitalier Universitaire d'Angers, Angers, France; ¹⁰Department of Pulmonary, Allergy and Critical Care Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea; and ¹¹Department of Anaesthesia and Intensive Care, 1st Medical Faculty, Charles University, General University, Prague, Czech Republic

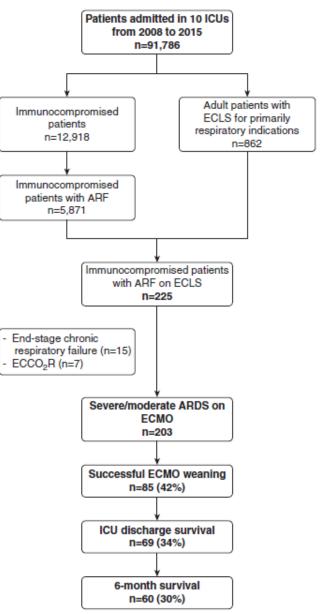


Figure 1. Flow chart of the study. ARDS = acute respiratory distress syndrome; ARF = acute respiratory failure; ECCO₂R = extracorporeal CO₂ removal; ECLS = extracorporeal life support; ECMO = extracorporeal membrane oxygenation.

Table 1. Baseline Characteristics of Patients according to 6-Month Survival Status

	Status 6 Months after ICU Admission				
Characteristics	All Patients (<i>N</i> = 203)	Survivors (n = 60)	Nonsurvivors (n = 143)	P Value	
Male sex	127 (63)	33 (55)	94 (66)	0.15	
Age, yr	51 (38–59)	49 (33–59)	52 (40–59)	0.10	
APACHE II score	28 (20–33)	28 (22–33)	28 (19–33)	0.54	
SOFA score at ICU admission	12 (8–15)	12 (8–16)	11 (7–15)	0.41	
Body mass index, kg/m ²	24.7 (21.7–28.2)	24.9 (21.5–28.1)	24.7 (22.0–28.1)	0.64	
Charlson comorbidity score	3 (2–4)	3 (1–4)	3 (2-4)	0.54	
Recently diagnosed immunodeficiency*	51 (25)	26 (43)	25 (17)	0.0002	
Hematological malignancies	62 (30)	15 (25)	47 (33)	0.27	
AML/ALL/MDS	15 (7)	2 (3)	13 (9)	0.26	
NHL/Hodgkin's/myeloma	38 (19)	10 (17)	28 (20)	0.62	
CML/others	9 (4)	3 (5)	6 (4)	0.48	
Recently diagnosed <30 d	14 (7)	7 (12)	7 (5)	0.08	
Allogeneic HSCT [†]	14 (7)	1 (2)	13 (9)	0.05	
Solid tumor	39 (19)	8 (13)	31 (22)	0.17	
Lung cancer	18 (9)	3 (5)	15 (10)	0.21	
Recently diagnosed (<30 d)	14 (7)	6 (10)	8 (6)	0.26	
Solid-organ transplant	27 (13)	11 (18)	16 (11)	0.17	
Lung	13 (6)	6 (10)	7 (5)	0.17	
Kidney	7 (3)	3 (5)	4 (3)	0.24	
Heart/liver	7 (3)	2 (3)	5 (3)	0.32	
<30 d	6 (3)	4 (7)	2 (1)	0.19	
AIDS	19 (9)	5 (8)	14 (10)	0.74	
Diagnosed at ICU admission	4 (2)	0 (0)	4 (3)	0.19	
AIDS opportunistic infection	6 (3)	2 (3)	4 (3)	0.57	
CD4 lymphocyte count, cells/mm ³	130 (29–362)	130 (83–226)	109 (22–400)	0.83	
Long-term CS/IS	56 (28)	21 (35)	35 (24)	0.12	
Recently diagnosed <30 d	13 (6)	9 (15)	4 (3)	0.001	
Connective tissue disease	27 (13)	11 (18)	16 (11)	0.22	
NSIP	8 (4)	0 (0)	8 (6)	0.09	
Vasculitis	7 (3)	4 (7)	3 (2)	0.21	
Crohn's/ulcerative colitis	5 (2)	3 (5)	2 (1)	0.37	
Others	9 (4)	3 (5)	6 (4)	0.62	

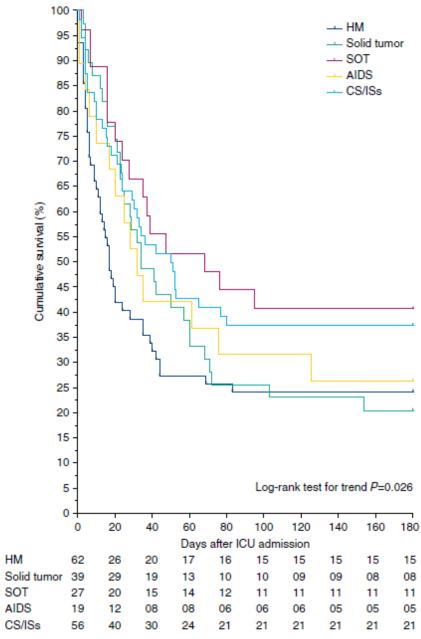


Figure 2. Kaplan-Meier estimates during the 180 days after ICU admission, depending on patients' underlying immunodeficiency. CS = corticosteroids; HM = hematological malignancies; IS = immunosuppressant use; SOT = solid-organ transplant.

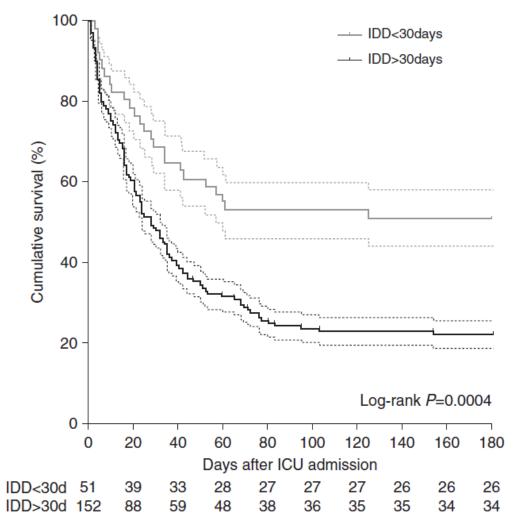


Figure 3. Kaplan-Meier survival estimates for immunocompromised patients with refractory acute respiratory distress syndrome on extracorporeal membrane oxygenation 180 days after ICU admission, according to the time of immunodeficiency diagnosis (IDD) (<30 or >30 d) (log-rank test; P = 0.0004). The dashed lines represent the 95% confidence interval.

Table 4. Pre-ECMO Predictors of 6-Month Mortality of Immunocompromised Patients with ARDS Rescued by ECMO

Variable*	OR (95% CI)	P Value
Recently diagnosed immunodeficiency [†] Platelet count Pco ₂ Age Driving pressure	0.364 (0.148-0.899) 0.996 (0.992-0.999) 1.031 (1.005-1.058) 1.032 (1.002-1.062) 1.079 (1.001-1.164)	0.028 0.008 0.019 0.035 0.047

Definition of abbreviations: ARDS = acute respiratory distress syndrome; CI = confidence interval; ECMO = extracorporeal membrane oxygenation; OR = odds ratio.

^{*}Obtained for 134 patients with complete data.

[†]A recently diagnosed immunocompromised status was defined as confirmed fewer than 30 days before ICU admission.

Recommandations

L'ECMO ne doit être envisagée que chez les patients cancéreux ayant un excellent état de santé (indice de performance OMS < 2) et un bon pronostic attendu à long terme. L'indication doit être discutée au cas par cas entre réanimateurs spécialisés dans le traitement des patients atteints de SDRA sévère et des hémato-oncologues (Avis d'expert, faible recommandation).

Nouvelle publication (étude germanoautrichienne)

Intensive Care Med (2022) 48:332–342 https://doi.org/10.1007/s00134-022-06635-y

ORIGINAL

Veno-venous extracorporeal membrane oxygenation (vv-ECMO) for severe respiratory failure in adult cancer patients: a retrospective multicenter analysis

Matthias Kochanek^{1*}, Jan Kochanek¹, Boris Böll¹, Dennis A. Eichenauer¹, Gernot Beutel², Hendrik Bracht³, Stephan Braune⁴, Florian Eisner⁵, Sigrun Friesecke⁶, Ulf Günther⁷, Gottfried Heinz⁸, Michael Hallek¹, Christian Karagiannidis⁹, Stefan Kluge⁴, Klaus Kogelmann¹⁰, Pia Lebiedz¹¹, Philipp M. Lepper¹², Tobias Liebregts¹³, Catherina Lueck², Ralf M. Muellenbach¹⁴, Matthias Hansen¹⁵, Christian Putensen¹⁶, Peter Schellongowski¹⁷, Jens-Christian Schewe¹⁶, Kathrin Schumann-Stoiber¹⁸, Frederik Seiler¹², Peter Spieth¹⁹, Steffen Weber-Carstens²⁰, Daniel Brodie^{21,22}, Elie Azoulay²³ and Alexander Shimabukuro-Vornhagen¹

Table 1 Baseline Characteristics and comparison between patients with hematologic malignancies and solid tumors

	Overall	Hematologic malignancies	Solid tumors	<i>p</i> -value
No. of patients (%)	297	138 (46.4)	159 (53.5)	
Age (median [IQR])	56 [44–65]	48 [35.2–58.7]	59 [52.5–67]	< 0.001
Sex, male (%)	214 (72.1)	99 (71.7)	115 (72.3)	
Leading cause for ICU admission				
Respiratory failure	203 (68.4)	110 (79.7)	93 (58.5)	< 0.001
Surgery	41 (13.8)	2 (1.4)	39 (24.5)	
Non-pulmonary infection	25 (8.4)	12 (8.7)	13 (8.2)	
Cardiac event	2 (0.7)	0 (0)	2 (1.3)	
Other	26 (8.8)	14 (10.1)	12 (7.5)	
Reason for vv-ECMO (%)				
Respiratory failure	284 (95.6)	138 (100)	146 (91.9)	0.003
ECMO-facilitated surgery	13 (4.4)	0 (0)	13 (8.1)	

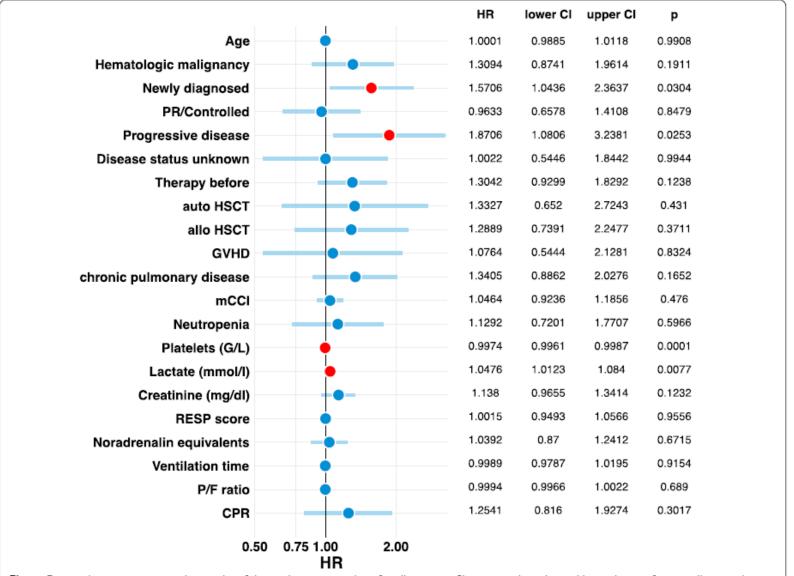


Fig. 1 Forest plots summarizing the results of the multivariate analysis for all patients. Shown are the adjusted hazard ratios for overall survival and 95% confidence intervals. (Abbreviations: mCCI modified Charlson Comorbidity Index (CCI) (excluded age and cancer diagnosis); GVHD Graft versus host disease; HSCT hematopoietic stem cell transplantation; RESP Score Respiratory ECMO Survival Prediction Score; CPR Cardiopulmonary Resuscitation)

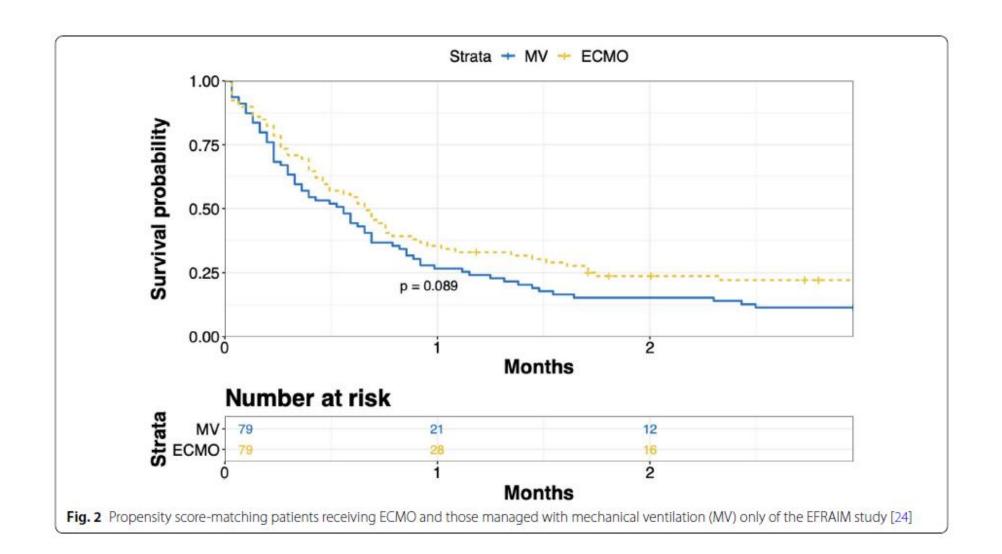


Table 2 Major vv-ECMO-related complications or complications during vv-ECMO

	Overall	Hematologic malignan- cies	Solid tumors	<i>p</i> -value
No. of patients (%)	297	138 (46.4)	159 (53.5)	< 0.001
Packed red blood cells units (%)				0.974
0	16 (5.4)	8 (5.8)	8 (5)	
1–5	69 (23.2)	31 (22.5)	38 (23.9)	
5–10	56 (18.9)	27 (19.6)	29 (18.2)	
>10	156 (52.5)	72 (52.2)	84 (52.8)	
Platelet units (%)				< 0.001
0	110 (37)	28 (20.3)	82 (51.6)	
1–5	81 (27.3)	40 (29)	41 (25.8)	
5–10	37 (12.5)	16 (11.6)	21 (13.2)	
>10	69 (23.2)	54 (39.1)	15 (9.4)	
Severe bleeding (%)	113 (38)	61 (44.2)	52 (32.7)	0.055
Ischemic stroke (%)	11 (3.7)	4 (2.9)	7 (4.4)	0.707
vv-ECMO system changed (%)	46 (15.5)	15 (10.9)	31 (19.5)	0.059
Number of vv-ECMO system changes (%)				0.109
0	251 (84.5)	123 (89.1)	128 (80.5)	
1	33 (11.1)	9 (6.5)	24 (15.1)	
2	11 (3.7)	5 (3.6)	6 (3.8)	
3	1 (0.3)	1 (0.7)	0 (0)	
5	1 (0.3)	0 (0)	1 (0.6)	
Accidental decannulation (%)	0	0 (0)	0 (0)	NA
Cardiac arrest during vv-ECMO (%)	30 (10.1)	18 (13)	12 (7.5)	0.169
Ventilator associated pneumothorax (%)	33 (11.1)	13 (9.4)	20 (12.6)	0.497

Conclusion

- La survie globale des patients cancéreux qui nécessitent une ECMO est médiocre et, par conséquent, l'ECMO ne devrait être proposée qu'à des patients sélectionnés.
- L'état de la maladie, une faible numération plaquettaire et des taux élevés de lactate identifiés comme indicateurs de mauvais pronostic devraient être pris en compte dans la décision de pratiquer une ECMO.