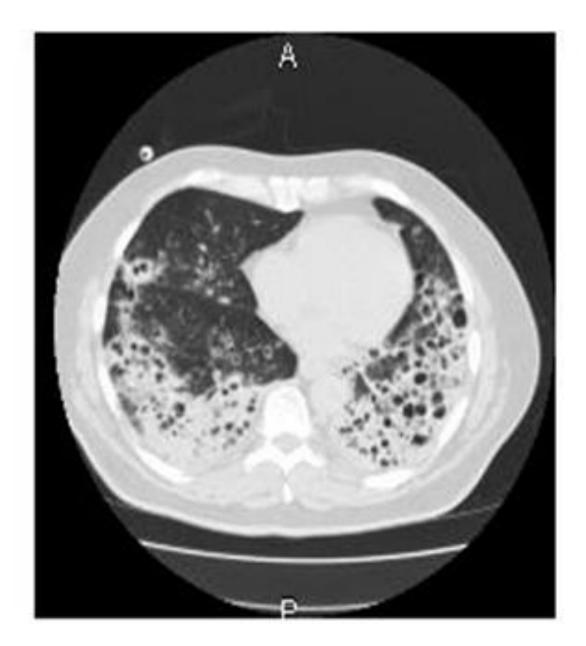

# L'insuffisance respiratoire aiguë

# Grands mécanismes de dyspnée chez le cancéreux


| Organe atteint         | <u>Mécanisme</u>                     | <u>Exemples</u>                                  |
|------------------------|--------------------------------------|--------------------------------------------------|
| Système nerveux        | défaillance commande neuromusculaire | coma<br>myasthénie<br>syndrome de Guillain-Barré |
| Poumon                 | 1) syndrome obstructif               | obstruction des voies<br>aériennes<br>asthme     |
|                        | 2) syndrome restrictif               | pneumopathie diffuse<br>épanchement pleural      |
| Circulation pulmonaire | espace mort                          | embolie pulmonaire                               |
| Cœur                   | défaillance pompe                    | tamponnade péricardique                          |
| Globules rouges        | déficit transport oxygène            | anémie                                           |
| Tissus périphériques   | blocage consommation oxygène         | choc septique                                    |

# Les pneumopathies diffuses





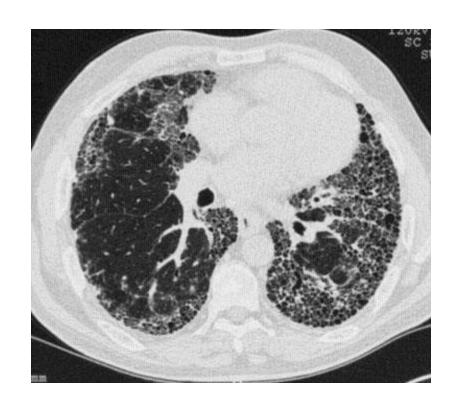




## Tableau clinique

- insuffisance respiratoire aiguë hypoxémiante par œdème pulmonaire lésionnel (ALI = acute lung injury)
- formes les plus graves : SDRA (syndrome de détresse respiratoire de l'adulte)
- Évolution possible vers la fibrose pulmonaire
- la neutropénie n'empêche pas le développement d'un SDRA qui pourra se majorer lors de la récupération de la leucocytose

#### Causes infectieuses


- Pneumocystis jiroveci
- Legionella
- Chlamydiase
- Tuberculose miliaire
- CMV, HSV, RSV, herpès zoster, Covid19
- Aspergillose

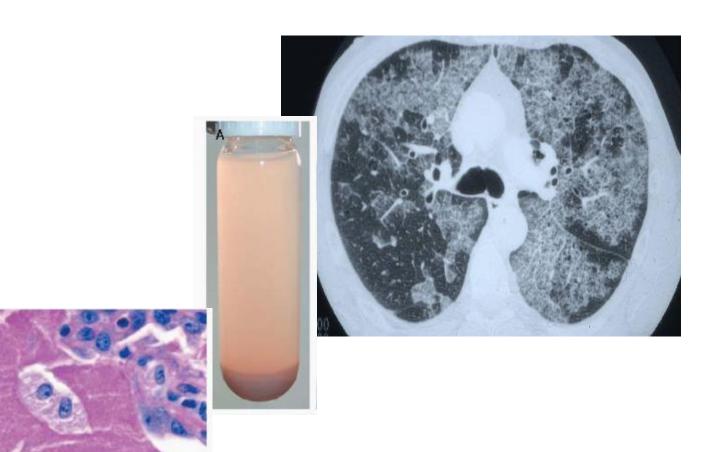
#### Causes non infectieuses

- toxicité médicamenteuse: MTX, BLM, MMC, IL-2, ITK, imunothérapies
- pneumonie radique
- hémorragie alvéolaire
- lymphangite carcinomateuse, leucostase pulmonaire
- œdème pulmonaire cardiogénique
- œdème pulmonaire lésionnel (→ SDRA)
- pneumopathie interstitielle idiopathique (greffe de moelle osseuse)
- pneumopathie aux leucoagglutinines (transfusion)

#### La fibrose

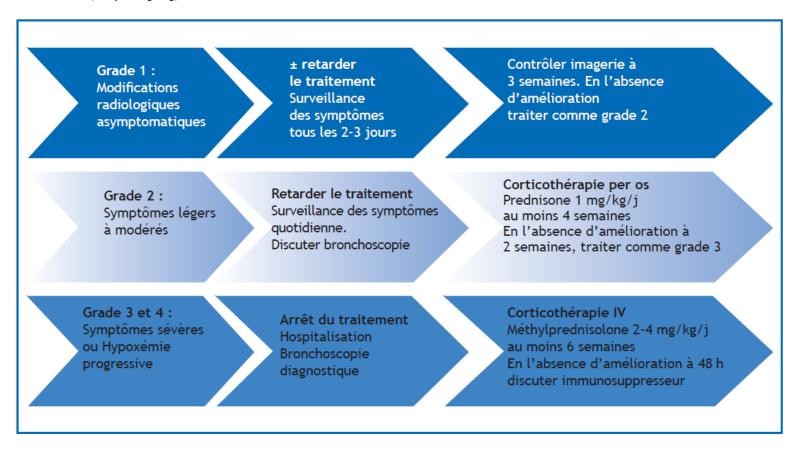
Complication ultime de certaines pneumopathies diffuses, s'installant rapidement (SDRA, greffe de moelle) ou progressivement (radiothérapie, cytotoxiques) et due à des réactions inflammatoires entraînant une fibrose diffuse des alvéoles et une insuffisance respiratoire majeure de pronostic très réservé.




## Les toxicités des traitements

#### Divers mécanismes

#### www.pneumotox.com


- bronchospasmes aigus (vinorelbine, paclitaxel, VM26, cisplatine)
- pneumopathies d'hypersensibilité (méthotrexate, cétuximab)
- pneumopathies interstitielles et fibroses pulmonaires (bléomycine, mitomycine, cyclophosphamide, nitrosourées, gefitinib, erlotinib, everolimus, temsirolimus, ITK, inh. points de contact immunitaires)
- pneumopathies à éosinophiles (méthotrexate, bléomycine)
- hémorragie alvéolaire (bévacuzimab)
- œdème pulmonaire lésionnel (cytosine arabinoside, interleukine-2, gemcitabine)
- pleurésies (mitomycine, docétaxel, méthotrexate).

### Protéinose alvéolaire secondaire



# Toxicité inhibiteurs point de contrôle immunitaire

Tableau 1. Recommandations pour la prise en charge de la toxicité pulmonaire des « inhibiteurs de point de contrôle » (d'après [16]).



https://doi.org/10.1016/S1877-1203(17)30086-1

# La lymphangite carcinomateuse

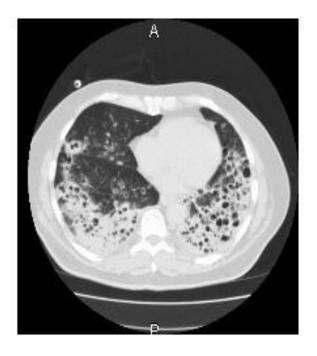


## La lymphangite carcinomateuse

- Mécanisme:
  - Embolie cellules néoplasques
  - Adénopathies médiastinales (a retro)
  - À partir tumeur pulmonaire
- dyspnée, parfois aiguë avec tableau type embolie pulmonaire
- toux non productive
- hypoxémie
- RX et TDM thorax : d'abord normale (stade des emboles vasculaires) puis pneumopathie interstitielle diffuse (stade de la lymphangite périvasculaire)
- finalement HT pulmonaire avec cœur pulmonaire



## Diagnostic

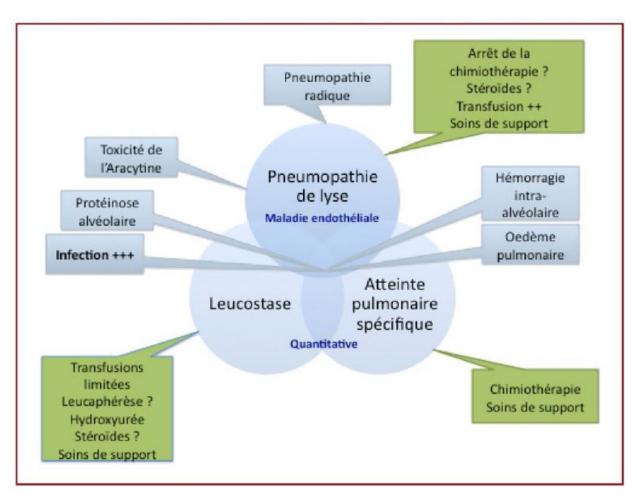

12

#### Diagnostic différentiel

- au début : embolie pulmonaire
- ensuite : cf pneumopathies interstitielles diffuses

#### **Diagnostic**

- TDM thorax
- bronchoscopie avec LBA et biopsies transbronchiques




1

#### Traitement

- oxygénothérapie
- chimiothérapie dirigée contre la tumeur sousjacente
- corticothérapie : méthylprednisolone 1 mg/kg/j
   à adapter à l'effet symptomatique

## Leucostase et pneumopathie de lyse



# L'hémoptysie massive



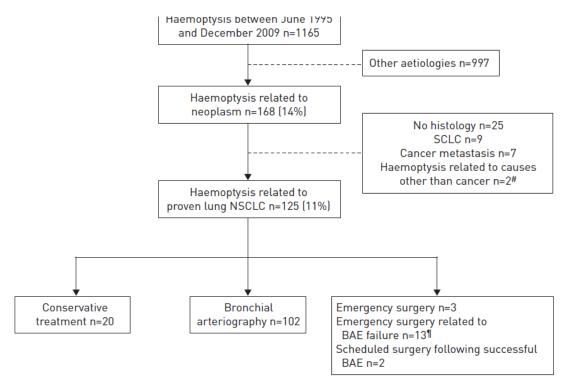


# Severe haemoptysis in patients with nonsmall cell lung carcinoma



Keyvan Razazi<sup>1</sup>, Antoine Parrot<sup>1</sup>, Antoine Khalil<sup>2</sup>, Michel Djibre<sup>1</sup>, Valerie Gounant<sup>3,4</sup>, Jalal Assouad<sup>4,5</sup>, Marie France Carette<sup>2,5</sup>, Muriel Fartoukh<sup>1,5</sup> and Jacques Cadranel<sup>3,5</sup>

Affiliations: <sup>1</sup>AP-HP, Hôpital Tenon, Unité de Réanimation Médico-Chirurgicale, Pôle Thorax Voies Aériennes, Groupe Hospitalier des Hôpitaux Universitaires de l'Est Parisien, Paris, France. <sup>2</sup>AP-HP, Hôpital Tenon, Service de Radiologie, Pôle Imagerie, Groupe Hospitalier des Hôpitaux Universitaires de l'Est Parisien, Paris, France. <sup>3</sup>AP-HP, Hôpital Tenon, Service de Pneumologie – Centre Expert en Oncologie Thoracique, Pôle Thorax Voies Aériennes, Groupe Hospitalier des Hôpitaux Universitaires de l'Est Parisien, Paris, France. <sup>4</sup>AP-HP, Hôpital Tenon, Service de Chirurgie Thoracique, Pôle Thorax Voies Aériennes, Groupe Hospitalier des Hôpitaux Universitaires de l'Est Parisien, Paris, France. <sup>5</sup>Sorbonne Universités, UPMC Univ Paris 06, Paris, France.



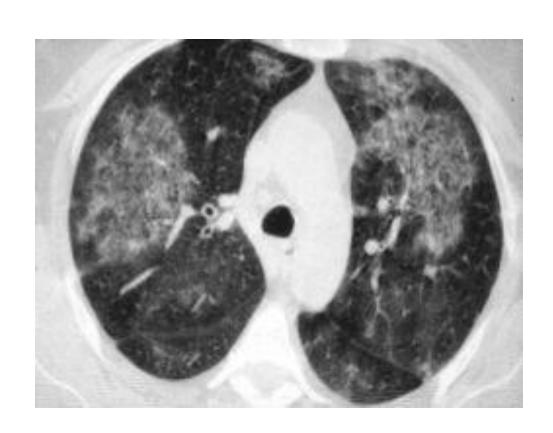


FIGURE 1 Flow chart of patients admitted for severe haemoptysis to Tenon Hospital (Paris, France) between June, 1995 and December, 2009. NSCLC: nonsmall cell lung cancer; SCLC: small cell lung cancer; BAE: bronchial arteriography embolisation.  $^{\#}$ : bronchiectasis n=1 and pulmonary embolism n=1;  $^{\P}$ : emergency surgery in patients in whom bleeding was not controlled after BAE.

TABLE 2 Univariate and multivariate analyses of variables associated with in-hospital mortality

| Variable                                     | Patients n Hospital mortality n (% | Univariate analysis |                  | Multivariate analysis |               |         |
|----------------------------------------------|------------------------------------|---------------------|------------------|-----------------------|---------------|---------|
|                                              |                                    |                     | OR (95% CI)      | p-value               | OR (95% CI)   | p-value |
| Age years                                    |                                    |                     | 0.98 (0.95-1.01) | 0.18                  |               |         |
| Alcohol abuse                                |                                    |                     |                  |                       |               |         |
| No                                           | 94                                 | 29 (31)             | 1                |                       |               |         |
| Yes                                          | 31                                 | 10 (32)             | 1.07 (0.45-2.6)  | 0.9                   |               |         |
| Performance status                           |                                    |                     |                  |                       |               |         |
| 0–1                                          | 79                                 | 17 (22)             | 1                |                       | 1             |         |
| 2-4                                          | 46                                 | 22 (48)             | 3.34 (1.5-7.3)   | 0.003                 | 3.6 [1.3-9.6] | 0.012   |
| COPD/CVD                                     |                                    |                     |                  |                       |               |         |
| No                                           | 34                                 | 10 (29)             | 1                |                       |               |         |
| Yes                                          | 91                                 | 29 (32)             | 1.12 (0.5–2.7)   | 0.8                   |               |         |
| Anticoagulants and/or antiplatelet treatment |                                    |                     |                  |                       |               |         |
| No                                           | 81                                 | 27 (33)             | 1                |                       |               |         |
| Yes                                          | 44                                 | 12 (27)             | 0.75 (0.33-1.7)  | 0.5                   |               |         |
| SCC                                          |                                    |                     |                  |                       |               |         |
| No                                           | 60                                 | 23 (38)             | 1                |                       |               |         |
| Yes                                          | 65                                 | 16 (25)             | 0.5 (0.3-1.1)    | 0.01                  |               |         |
| Advanced NSCLC#                              |                                    |                     |                  |                       |               |         |
| No                                           | 37                                 | 3 (8)               | 1                |                       | 1             |         |
| Yes                                          | 87                                 | 35 (40)             | 7.6 (2.2-27)     | 0.002                 | 8.6 (2-37)    | 0.004   |
| Cavitation or necrosis                       |                                    |                     |                  |                       |               |         |
| No                                           | 99                                 | 29 [29]             | 1                |                       |               |         |
| Yes                                          | 26                                 | 10 (38)             | 1.5 (0.61-3.7)   | 0.37                  |               |         |
| Central location <sup>¶</sup>                |                                    |                     |                  |                       |               |         |
| No                                           | 31                                 | 6 (19)              | 1                |                       |               |         |
| Yes                                          | 91                                 | 32 (35)             | 2.3 (0.84-6.1)   | 0.11                  |               |         |
| Cancer progression                           |                                    |                     |                  |                       |               |         |
| No                                           | 94                                 | 24 [26]             | 1                |                       |               |         |
| Yes                                          | 31                                 | 15 (48)             | 2.7 (1.2-6.4)    | 0.02                  |               |         |
| Mechanical ventilation                       |                                    | ,                   |                  |                       |               |         |
| No                                           | 87                                 | 14 (16)             | 1                |                       | 1             |         |
| Yes                                          | 38                                 | 25 (66)             | 10 (4.2–24)      | < 0.001               | 13 (4.5–36)   | < 0.001 |
| Vasopressors                                 |                                    | 20 (00)             | 10 (112 21)      |                       | 10 (110 00)   |         |
| No                                           | 104                                | 24 (23)             | 1                |                       |               |         |
| Yes                                          | 21                                 | 15 (71)             | 8.3 (2.9-24)     | < 0.001               |               |         |
| Transfusion                                  |                                    | (/ 1)               | 0.0 (2.7 27)     |                       |               |         |
| No                                           | 96                                 | 24 (25)             | 1                |                       |               |         |
| Yes                                          | 29                                 | 15 (52)             | 3.2 [1.4–7.6]    | 0.008                 |               |         |
| SAPS II (per point)                          | ۷,                                 | 10 (02)             | 1.07 (1.04–1.1)  | < 0.000               |               |         |
| Vasoconstrictive agents                      |                                    |                     | 1.07 (1.04-1.1)  | 10.001                |               |         |
| No                                           | 68                                 | 16 (24)             | 1                | 1                     |               |         |
| Yes                                          | 57                                 | 23 (40)             | 2.2 (1.02–4.8)   | 0.05                  |               |         |
| Bronchial arteriography                      | 37                                 | 25 (40)             | 2.2 (1.02-4.0)   | 0.00                  |               |         |
| No                                           | 23                                 | 11 (48)             | 1                |                       |               |         |
| Yes                                          | 102                                | 28 (27)             | 0.41 (0.16–1.04) | 0.06                  |               |         |
| 165                                          | 102                                | 20 (2/)             | 0.41 (0.10-1.04) | 0.00                  |               |         |

COPD: chronic obstructive pulmonary disease; CVD: cardiovascular disease; SCC: squamous cell carcinoma; NSCLC: nonsmall cell lung cancer; SAPS: Simplified Acute Physiology Score. #: in one stage III NSCLC patient the A or B staging could be not determined; 1: central location could not be determined in three patients.

# L'hémorragie alvéolaire



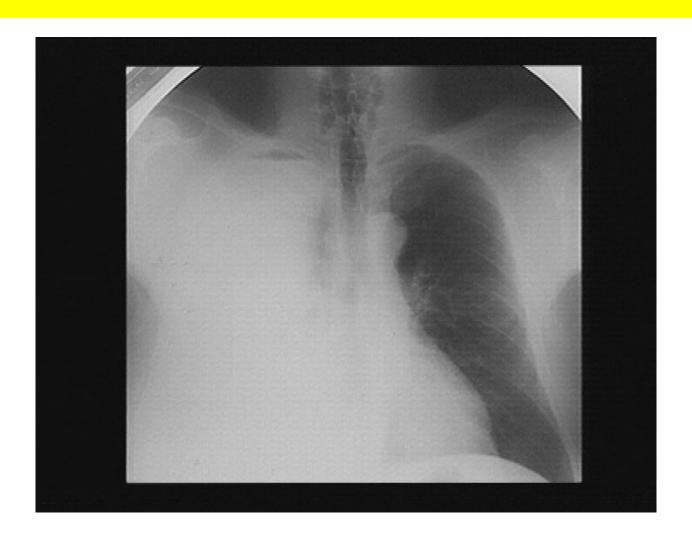
## Souvent de mécanismes multiples

- augmentation de la pression capillaire: OPH, maladie veino-occlusive, infarcissements (aspergillose)
- lésion membrane alvéolocapillaire : infections, amiodarone, chimiothérapie, radiothérapie, infiltration néoplasique
- troubles de l'hémostase : thrombopénie sévère, CIVD, avitaminose K

## Tableau clinique

moins dramatique que chez le non cancéreux!

- dyspnée, hémoptysie, anémie aiguë, SDRA
- opacités alvéolaires diffuses en verre dépoli
- LBA : liquide rouge-rosé, présence d'hématies et d'hémosidérine


#### Traitement

- corriger les troubles de l'hémostase
- corriger une éventuelle cause cardiovasculaire ( Pcap)
- rechercher l'aspergillose (LBA) : éviter dans ce cas les corticoïdes et traiter à l'amphotéricine B
- corticothérapie à haute dose (lésions toxiques : cf contexte de chimiothérapie intensive et de TBI) : Solumédrol<sup>R</sup> 15 mg/kg (sans dépasser 1g) 3 jours en bolus iv puis 1 à 2 mg/kg/j pendant quelques semaines
- oxygénothérapie, VNI, ventilation mécanique invasive

### Hémorragie alvéolaire diffuse : stéroïdes. Metcalf, Am J Med 96:327;1994

| Méthylprednisolone | -   | < 30 mg | > 30 mg | p  |
|--------------------|-----|---------|---------|----|
| n                  | 12  | 10      | 43      |    |
| intubés            | 7   | 5       | 21      |    |
| décès              | 11  | 9       | 29      | S  |
| VA post-diagnostic | 5/5 | 4/5     | 10/22   | S  |
| infections II      | 5   | 3       | 18      | NS |

# Les épanchements pleuraux







## Abord thérapeutique

- Spécifique : traitement de la cause
- Symptomatique : contrôle de la formation de l'épanchement pleural :
  - ponction-vidange
  - pleurodèse
  - pleurectomie

# La ventilation mécanique

#### Indications

- Les pathologies respiratoires
- Les pathologies non respiratoires

Peu de ces affections ont fait jusqu'à présent l'objet d'études spécifiquement en rapport avec la ventilation mécanique

## Les pathologies respiratoires

- Les pneumopathies infectieuses diffuses, principalement dues à :
  - Pneumocystis jirovecii
  - Cytomégalovirus
  - Aspergillose invasive
  - Infections bactériennes ordinaires (Pneumocoque, Pseudomonas aeruginosa, entérobactéries, ...)
  - Infections virales diverses (adénovirus, virus respiratoire syncytia, ...)
- Les hémorragies
  - hémorragie alvéolaire diffuse
  - hémoptysie massive
- Les atteintes néoplasiques
  - obstruction et compression tumorales
  - embolie de cellules tumorales et lymphangite carcinomateuse
  - leucostase
  - fausse déglutition et/ou fistule oesophagorespiratoire

- Les effets toxiques du traitement
  - Chimiothérapie
  - Thérapies ciblées
  - Immunothérapies
  - Radiothérapie
  - pneumopathie de lyse tumorale
  - syndrome de l'acide rétinoïque
  - pneumopathie aux leucoagglutinines
  - syndrome de fuite capillaire
- La protéinose alvéolaire secondaire
- Les complications des greffes de moelle
  - syndrome de fuite capillaire
  - pneumopathie interstitielle idiopathique
  - maladie veino-occlusive pulmonaire
  - Bronchiolite oblitérante

# Les pathologies non respiratoires

- 1. Les états de choc (essentiellement choc septique)
- 2. L'insuffisance cardiaque avec ædème pulmonaire hémodynamique
- 3. Le SDRA dans le cadre d'un syndrome de défaillance multiviscérale (souvent d'origine septique)
- 4. L'embolie pulmonaire cruorique
- 5. L'insuffisance ventilatoire d'origine neurologique
- 6. L'arrêt cardio-respiratoire

#### ORIGINAL

Gaston Burghi
Virginie Lemiale
Amélie Seguin
Jérôme Lambert
Claire Lacroix
Emmanuel Canet
Anne-Sophie Moreau
Patricia Ribaud
David Schnell
Eric Mariotte
Benoît Schlemmer
Elie Azoulay

Outcomes of mechanically ventilated hematology patients with invasive pulmonary aspergillosis

CRITICAL CARE MEDICINE Copyright © 1993 by Williams & Wilkins complie. raijer

Vol. 21, No. 3 Printed in U.S.A.

# Laser bronchoscopy in respiratory failure from malignant airway obstruction

IOANNIS T. STANOPOULOS, MD; JOHN F. BEAMIS,  $J_R$ , MD; FERNANDO J. MARTINEZ, MD; KONSTANTINOS VERGOS, MD; STANLEY M. SHAPSHAY, MD

1/

#### ORIGINAL ARTICLE

# Radiotherapy for Intubated Patients with Malignant Airway Obstruction

#### Futile or Facilitating Extubation?

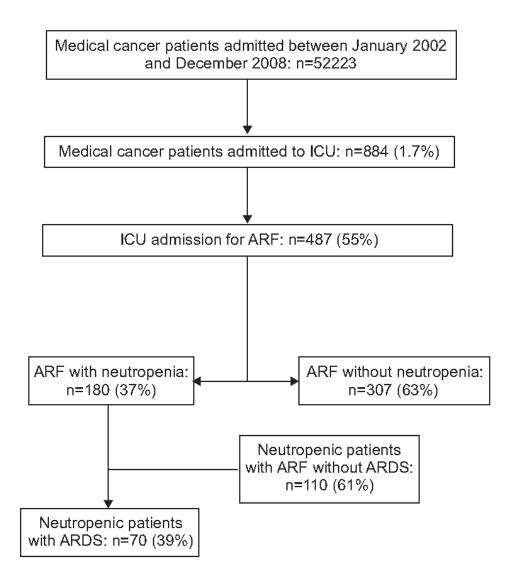
Alexander V. Louie, MD,\*† Sophia Lane, MD,\* David A. Palma, MD, PhD, MSc,\*† Andrew Warner, MSc,†

Jeffrey Q. Cao, MD, MBA,\*† and George B. Rodrigues, MD, MSC\*†‡

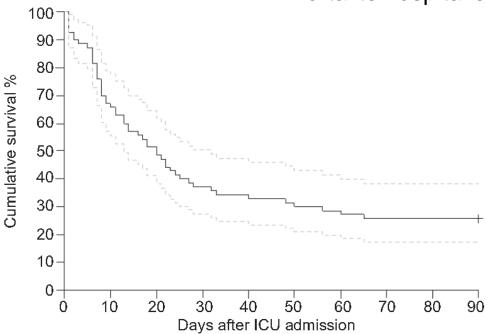
**Introduction:** The optimal approach to patients with malignant airway obstruction who require intubation and mechanical ventilation but are ineligible for bronchoscopic interventions is uncertain. Radiotherapy (RT) may be delivered but requires substantial resources in this patient

**Key Words:** Radiotherapy, Malignant airway obstruction, Intensive care unit.

(J Thorac Oncol. 2013;8: 1365–1370)


### **SDRA**

Eur Respir J 2012; 40: 169 176 DOI: 10.1183/09031936.00150611 Copyright©ERS 2012




### Prognosis of acute respiratory distress syndrome in neutropenic cancer patients

Djamel Mokart\*, Thomas van Craenenbroeck\*, Jérôme Lambert\*, Julien Textoris\*, Jean-Paul Brun\*, Antoine Sannini\*, Laurent Chow-Chine\*, Smail Hamouda\*, Louis Fouché\*, Florence Ettori\*, Marion Faucher\* and Jean-Louis Blache\*



#### mortalité hospitalière de 64 %



**FIGURE 2.** Survival in neutropenic patients with aquired respiratory distress sydrome. Overall survival is truncated at 90 days. ----: 95% confidence interval. ICU: intensive care unit.

TABLE 1 Patients characteristics at intensive care unit (ICU) admission

|                                               | Survivors  | Nonsurvivors | p-value |
|-----------------------------------------------|------------|--------------|---------|
| Subjects n                                    | 26         | 44           |         |
| Females                                       | 11 (42)    | 22 (50)      | 0.62    |
| Age yrs                                       | 54 (37–66) | 55 (49–65)   | 0.43    |
| Underlying malignancy                         |            |              |         |
| Acute leukaemia                               | 18 (69)    | 21 (48)      | 0.20    |
| Lymphoma                                      | 7 (27)     | 12 (27)      |         |
| Myeloma                                       | 1 (4)      | 3 (7)        |         |
| Solid tumours                                 | 0 (0)      | 4 (9)        |         |
| Other malignancies                            | 0 (0)      | 4 (9)        |         |
| Delay since malignancy days                   | 15 (7–39)  | 180 (18–601) | 0.0011  |
| Status of malignancy                          |            |              |         |
| First-line chemotherapy                       | 22 (85)    | 19 (43)      | 0.0041  |
| Complete remission                            | 0 (0)      | 5 (11)       |         |
| Relapse                                       | 4 (15)     | 16 (36)      |         |
| Secondary acute leukaemia                     | 0 (0)      | 4 (9)        |         |
| Delay since neutropenia at ICU admission days | 4 (0–8)    | 5 (3–13)     | 0.12    |
| вмт                                           | 2 (8)      | 12 (27)      | 0.065   |

| Causes of ARDS                                      |         |         |        |
|-----------------------------------------------------|---------|---------|--------|
| Unknown                                             | 8 (31)  | 11 (25) | 0.91   |
| Nonseptic ARDS                                      | 1 (4)   | 3 (7)   |        |
| Septic ARDS                                         | 17 (65) | 30 (68) |        |
| Gram-negative bacilli                               | 5 (19)  | 12 (27) | 0.41   |
| Gram-positive cocci                                 | 4 (15)  | 5 (11)  |        |
| Fungi                                               | 5 (19)  | 9 (21)  |        |
| Viruses                                             | 1 (4)   | 4 (9)   |        |
| Other infections                                    | 2 (8)   | 0 (0)   |        |
| Invasive pulmonary aspergillosis                    | 3 (12)  | 5 (12)  | >0.99  |
| Extrapulmonary ARDS#                                | 5 (28)  | 16 (49) | 0.23   |
| Pulmonary ARDS#                                     | 13 (72) | 17(52)  |        |
| Lung morphology on CT                               |         |         |        |
| Diffuse ARDS                                        | 12 (46) | 31 (71) | 0.027  |
| Patchy ARDS                                         | 4 (15)  | 8 (18)  |        |
| Lobar ARDS                                          | 10 (39) | 5 (11)  |        |
| Antimicrobial treatment                             |         |         |        |
| Initial antibiotic treatment active on DTT bacteria | 16 (62) | 12 (27) | 0.0061 |
| Microbiological documentation at ICU admission¶     | 9 (56)  | 15 (50) | 0.76   |

## Conclusions

À l'admission en USI, la chimiothérapie de première ligne, le SDRA lobaire et l'utilisation d'un traitement antibiotique actif sur les bactéries difficiles à traiter sont associés à la survie.

Pendant le séjour en soins intensifs, la récupération de la neutropénie semble être un point important de récupération, tandis que la persistance de défaillances d'organes et l'utilisation de vasopresseurs sont associées à la mort.

La plupart des survivants ont un séjour en USI > 3 semaines

Elie Azoulay
Virginie Lemiale
Djamel Mokart
Frédéric Pène
Achille Kouatchet
Pierre Perez
François Vincent
Julien Mayaux
Dominique Benoit
Fabrice Bruneel
Anne-Pascale Meert
Martine Nyunga
Antoine Rabbat
Michael Darmon

# Acute respiratory distress syndrome in patients with malignancies

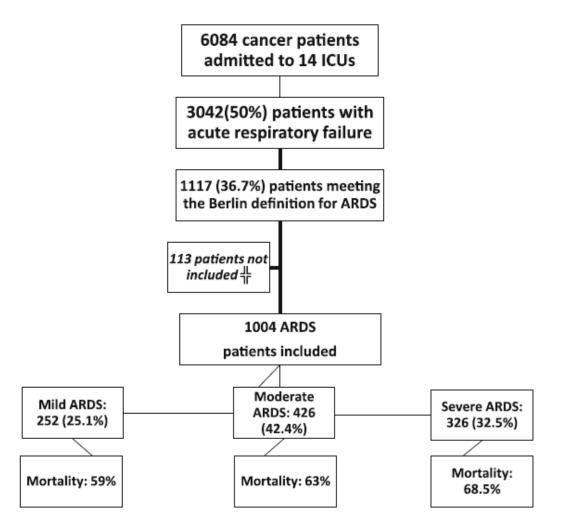
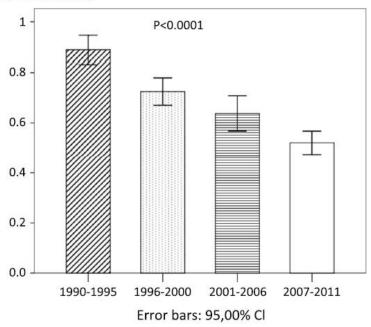



Fig. 1 Patient flow chart and distribution among in three ARDS severity categories in the Berlin definition. The reasons for non-inclusion were as follows: 55 patients did not receive noninvasive or endotracheal mechanical ventilation and vital status at hospital discharge was unknown in 58 patients

Table 1 Patient characteristics at admission to the intensive care unit


| Median (IQR) or $n$ (%)          | Study population ( $n = 1,004$ ) | Survivors ( $n = 364$ ) | Non-survivors ( $n = 640$ ) | p value  |
|----------------------------------|----------------------------------|-------------------------|-----------------------------|----------|
| Male gender                      | 642 (63.9 %)                     | 240 (65.9 %)            | 402 (62.8 %)                | 0.32     |
| Age (years)                      | 58 (48–67)                       | 57 (47–67)              | 58 (48–67)                  | 0.33     |
| Underlying malignancy            |                                  |                         |                             |          |
| Acute leukemia                   | 298 (29.7 %)                     | 96 (26.4 %)             | 202 (31.6 %)                | 0.08     |
| Non-Hodgkin's lymphoma           | 318 (31.7 %)                     | 115 (31.6 %)            | 203 (31.7 %)                | 0.97     |
| Myeloma                          | 113 (11.3 %)                     | 34 (9.3 %)              | 79 (12.3 %)                 | < 0.0001 |
| Solid tumor                      | 147 (14.6 %)                     | 60 (16.5 %)             | 87 (13.6 %)                 | 0.21     |
| Miscellaneous                    | 95 (9.5 %)                       | 46 (12.6 %)             | 48 (7.7 %)                  | 0.01     |
| Allogeneic BMT/HSTC <sup>a</sup> | 115 (11.5 %)                     | 36 (9.9 %)              | 79 (12.3 %)                 | 0.23     |
| Neutropenia                      | 444 (44.2 %)                     | 148 (40.7 %)            | 296 (46.3 %)                | 0.08     |
| Stage                            |                                  | ,                       |                             |          |
| Progressive                      | 458 (45.6 %)                     | 171 (47.0 %)            | 287 (44.8 %)                | 0.0003   |
| Partial/complete remission       | 237 (23.6 %)                     | 100 (27.4 %)            | 137 (21.4 %)                |          |
| Newly diagnosed                  | 72 (7.2 %)                       | 33 (9.1 %)              | 39 (6.1 %)                  |          |
| Unknown                          | 237 (23.6 %)                     | 60 (16.5 %)             | 177 (27.7 %)                |          |

<sup>&</sup>lt;sup>a</sup> Bone-marrow transplantation/hematopoietic-stem-cell transplantation

Table 2 ARDS causes, severity and treatment, and hospital mortality

| Median (IQR) or $n$ (%)            | Study population ( $n = 1,004$ ) | Survivors ( $n = 364$ ) | Non-survivors ( $n = 640$ ) | p value  |
|------------------------------------|----------------------------------|-------------------------|-----------------------------|----------|
| SOFA score (31) on day-1           | 12 [10–13]                       | 10 [8–12]               | 13 [10–13]                  | < 0.0001 |
| mSOFA score on day-1               | 9 [6–11]                         | 7 [5–10]                | 9 [7–11]                    | < 0.0001 |
| Emergency surgery                  | 64 (6.4 %)                       | 34 (9.3 %)              | 30 (4.7 %)                  | 0.004    |
| Sepsis                             | 745 (74.2 %)                     | 275 (75.5 %)            | 470 (73.4 %)                | 0.46     |
| Cause of ARDS                      |                                  |                         |                             |          |
| Pulmonary infection <sup>a</sup>   | 662 (65.9 %)                     | 281 (77.2 %)            | 381 (59.5 %)                | < 0.0001 |
| Secondary ARDS <sup>a</sup>        | 225 (22.4 %)                     | 55 (15.1 %)             | 170 (26.6 %)                | < 0.0001 |
| Fungal infection <sup>b</sup>      | 293 (30.7 %)                     | 83 (23.2 %)             | 210 (35.1 %)                | 0.0001   |
| Pneumocystis                       | 64 (6.4 %)                       | 30 (8.2 %)              | 34 (5.3 %)                  | 0.07     |
| No definite diagnosis <sup>c</sup> | 41 (5.7 %)                       | 12 (4.5 %)              | 29 (6.4 %)                  | 0.29     |
| Berlin categories                  |                                  |                         |                             |          |
| Mild (P/F >200)                    | 252 (25.1 %)                     | 103 (28.3 %)            | 149 (23.3 %)                |          |
| Moderate (P/F 100-200)             | 426 (42.4 %)                     | 158 (43.4 %)            | 268 (41.8 %)                | 0.06     |
| Severe $(P/F < 100)$               | 326 (32.5 %)                     | 103 (28.3 %)            | 223 (34.8 %)                |          |
| Organ Support                      |                                  |                         |                             |          |
| NĬV                                | 387 (38.6 %)                     | 174 (47.8 %)            | 213 (33.3 %)                | < 0.0001 |
| NIV failure                        | 276 (27.5 %)                     | 103 (28.3 %)            | 173 (27.0 %)                | 0.67     |
| Endotracheal MV                    | 893 (88.9 %)                     | 293 (80.5 %)            | 600 (93.8 %)                | < 0.0001 |
| Vasopressors                       | 731 (72.8 %)                     | 241 (66.2 %)            | 490 (76.6 %)                | 0.0004   |
| Renal replacement therapy          | 306 (30.5 %)                     | 99 (27.2 %)             | 207 (32.3 %)                | 0.09     |

#### Hospital mortality



 $\textbf{Fig. 2} \ \ \textbf{Hospital mortality according to period of admission to the intensive care unit}$ 

Table 3 Factors independently associated with hospital mortality

|                                 | OR   | 95 % CI     | p value |
|---------------------------------|------|-------------|---------|
| Solid tumor                     | 0.51 | (0.34–0.77) | 0.002   |
| Need for emergency surgery      | 0.61 | (0.35-1.05) | 0.07    |
| Allogeneic BMT/HSCT             | 1.71 | (1.07-2.71) | 0.04    |
| mSOFA (per point)               | 1.11 | (1.06-1.16) | < 0.001 |
| Cause of respiratory involvemen | nt   |             |         |
| No definite diagnosis           | 1    | (Reference) | _       |
| Primary ARDS                    | 0.41 | (0.20-0.88) | 0.02    |
| Secondary ARDS                  | 0.90 | (0.41-2.01) | 0.80    |
| Invasive fungal infection       | 1.72 | (1.25-2.37) | 0.001   |
| Ventilation                     |      |             |         |
| NIV                             | 1    | (Reference) | _       |
| NIV failure                     | 2.93 | (1.80-4.79) | < 0.001 |
| Endotracheal MV                 | 3.24 | (2.02-5.24) | < 0.001 |
| ARDS severity                   |      |             |         |
| Mild                            | 1    | (Reference) | _       |
| Moderate                        | 1.25 | (0.88-1.78) | 0.22    |
| Severe                          | 1.61 | (1.10–2.36) | 0.01    |

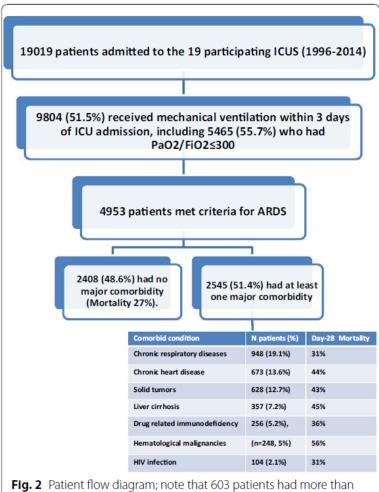
## Conclusions

Les infections pulmonaires ou extrapulmonaires ont causé jusqu'à 90% des cas de SDRA chez les patients atteints de tumeurs malignes. Les infections fongiques invasives représentaient un tiers de ces infections. La mortalité a considérablement diminué au fil du temps.

L'échec de la VNI s'est produit dans 70% des cas et a été associé au décès, notamment chez les patients atteints de SDRA sévère, chez qui la VNI initiale est probablement imprudente.

Parmi les trois catégories de SDRA définies dans la définition de Berlin, seule une SDRA sévère était associée à une mortalité accrue.

La mortalité élevée chez les patients atteints d'infections fongiques invasives indique un besoin urgent d'études spécifiques de traitement antifongique précoce chez les patients à haut risque.


Intensive Care Med (2018) 44:1050–1060 https://doi.org/10.1007/s00134-018-5209-6

#### **ORIGINAL**

# Management and outcomes of acute respiratory distress syndrome patients with and without comorbid conditions

Elie Azoulay<sup>1\*</sup>, Virginie Lemiale<sup>1</sup>, Bruno Mourvillier<sup>2</sup>, Maite Garrouste-Orgeas<sup>3</sup>, Carole Schwebel<sup>4</sup>, Stéphane Ruckly<sup>5</sup>, Laurent Argaud<sup>6</sup>, Yves Cohen<sup>7</sup>, Bertrand Souweine<sup>8</sup>, Laurent Papazian<sup>9</sup>, Jean Reignier<sup>10</sup>, Guillaume Marcotte<sup>11</sup>, Shidasp Siami<sup>12</sup>, Hatem Kallel<sup>13</sup>, Michael Darmon<sup>1</sup> and Jean-François Timsit<sup>14</sup> on behalf of the OUTCOMEREA Study Group

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature and ESICM



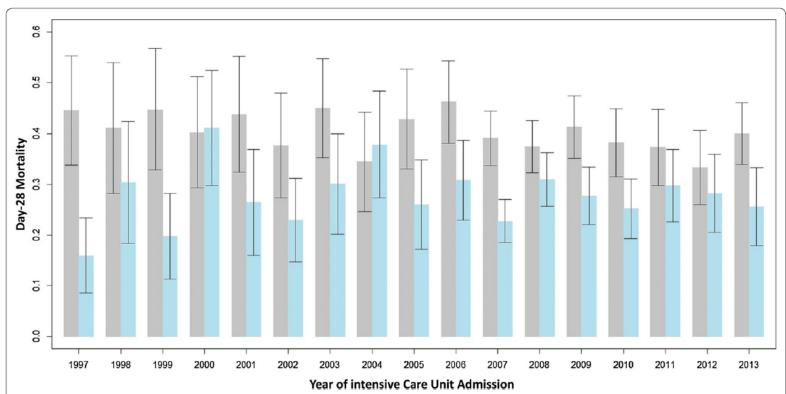

**Fig. 2** Patient flow diagram; note that 603 patients had more than one comorbidity

Table 2 Multivariate analysis of factors independently associated with day-28 mortality in patients with ARDS (Cox model stratified on center)

| Variable                                                                                                                                           | Hazard ratio (95% confidence interval)                                                                                                                        | <i>P</i> value                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Comorbid conditions                                                                                                                                |                                                                                                                                                               |                                                                    |
| Chronic respiratory disease Chronic heart failure Liver cirrhosis Solid tumor Drug-related immunodeficiency Hematological malignancy HIV infection | 0.824 (0.721-0.942)<br>1.492 (1.308-1.701)<br>1.124 (0.951-1.329)<br>1.544 (1.350-1.765)<br>1.058 (0.850-1.317)<br>1.514 (1.243-1.844)<br>0.767 (0.539-1.091) | 0.004<br>< 0.0001<br>0.171<br>< 0.0001<br>0.613<br>0.0001<br>0.139 |
| Lowest P <sub>a</sub> O <sub>2</sub> /F <sub>i</sub> O <sub>2</sub> ratio                                                                          |                                                                                                                                                               |                                                                    |
| 200–300 (mild ARDS)                                                                                                                                | Reference                                                                                                                                                     |                                                                    |
| 100–299 (moderate ARDS)<br>< 100 (severe ARDS)                                                                                                     | 1.229 (1.094–1.381)<br>1.692 (1.489–1.923)                                                                                                                    | 0.0005<br>< 0.0001                                                 |
| Highest P <sub>a</sub> CO <sub>2</sub> on day 1 > 50 mmHg                                                                                          | 1.411 (1.252–1.589)                                                                                                                                           | < 0.0001                                                           |
| Pulmonary ARDS                                                                                                                                     | 0.680 (0.595–0.775)                                                                                                                                           | <0.0001                                                            |
| SOFA score without respiratory points on day 1                                                                                                     |                                                                                                                                                               |                                                                    |
| < 4                                                                                                                                                | Reference                                                                                                                                                     |                                                                    |
| 4–5<br>5–8<br>> 8                                                                                                                                  | 1.526 (1.268–1.835)<br>2.329 (1.961–2.766)<br>5.033 (4.254–5.955)                                                                                             | < 0.0001<br>< 0.0001<br>< 0.0001                                   |
| ICU–acquired events <sup>a</sup>                                                                                                                   | 1.411 (1.252–1.589)                                                                                                                                           | < 0.0001                                                           |

ARDS acute respiratory distress syndrome, HIV human immunodeficiency virus,  $PaO_2/FiO_2$  ratio of partial pressure of oxygen in arterial blood over fraction of inspired oxygen,  $PaCO_2$  partial pressure of carbon dioxide in arterial blood, SOFA Sequential Organ Function Assessment, ICU intensive care unit

<sup>&</sup>lt;sup>a</sup> Defined as events that were not expected at ICU admission but may affect outcomes, i.e., bleeding, myocardial or mesenteric infarction, atelectasis, cardiac arrest, arrhythmia requiring cardioversion, pulmonary embolism, drug allergy, seizures, medical error, hypoglycemia, and pericarditis requiring drainage



**Fig. 5** Day-28 mortality (with 95% confidence intervals) during each study year in patients with at least one comorbidity (*gray bars*) and those with no comorbidities (*blue bars*). The test for trend was non-significant in the group without comorbidities (Cochran–Armitage test, P = 0.46) and showed a non-significant trend in patients with at least one comorbidity (Cochran–Armitage test, P = 0.09)

## Conclusions

La moitié des patients atteints de SDRA présentaient des comorbidités majeures, qui étaient associées à un SDRA sévère, à un dysfonctionnement de plusieurs organes et à une mortalité au jour 28. Ces résultats n'appuient pas l'exclusion des patients atteints de SDRA présentant des comorbidités sévères des essais cliniques randomisés. Des essais chez des patients atteints de SDRA avec n'importe quelle comorbidité sont justifiés.

# Les techniques de ventilation mécanique

- La ventilation invasive
- La ventilation non invasive (VNI)
- La ventilation invasive à l'ère de la VNI

# La ventilation mécanique invasive



## Les résultats

#### Sculier JP et al:

La ventilation artificielle chez les patients atteints de cancer.

Rev Mal Respir 2001; 18(2):137-154.

# Le pronostic en résumé

| Type de population          | Nombre   | Nombre de         | Taux de succès |  |  |
|-----------------------------|----------|-------------------|----------------|--|--|
|                             | d'études | patients ventilés | (médiane)      |  |  |
| Tout cancéreux              | 15       | 10 - 782          | 4 – 71% (18%)  |  |  |
| <b>Tumeurs solides</b>      | 7        | 22 - 627          | 25 – 93% (31%) |  |  |
| <b>Hémopathies malignes</b> | 7        | 17 - 67           | 8 – 35% (27%)  |  |  |
| Greffes de moelle           | 11       | 16 - 60           | 4 – 19% (9%)   |  |  |

## L'expérience de l'Institut Bordet

Support Care Cancer (2003) 11:236–241 DOI 10.1007/s00520-002-0436-2

#### ORIGINAL ARTICLE

F. Vallot M. Paesmans T. Berghmans J. P. Sculier Leucopenia is an independent predictor in cancer patients requiring invasive mechanical ventilation: a prognostic factor analysis in a series of 168 patients

Table 1 Patients characteristics

| Variable                        |                         | n       | %   |
|---------------------------------|-------------------------|---------|-----|
| Total number of patients        |                         | 168     | -   |
| Demographic variables           |                         |         |     |
| Age                             | Median (years)          | 56      | _   |
|                                 | Range                   | 21-86   | -   |
| Sex                             | Male                    | 82      | 49  |
|                                 | Female                  | 86      | 51  |
| Cancer-related variables        |                         |         |     |
| Type of tumour                  | Solid                   | 104     | 62  |
|                                 | Haematological          | 64      | 38  |
| Cancer status                   | Complete response       | 7       | 4   |
|                                 | Partial response        | 19      | 11  |
|                                 | Stable disease          | 14      | 8   |
|                                 | Progression             | 93      | 55  |
|                                 | Induction treatment     | 35      | 21  |
| Cancer phase                    | Diagnosis               | 5       | 3   |
| 5                               | Curative                | 56      | 33  |
|                                 | Control                 | 87      | 52  |
|                                 | Pivotal                 | 19      | 11  |
|                                 | Palliative              | 1       | 0.5 |
| Cancer evolution duration       | Median (months)         | 14.5    | _   |
|                                 | Range                   | (0-244) | -   |
| Bone marrow graft               | No                      | 146     | 87  |
|                                 | Autologous              | 12      | 7   |
|                                 | Allogeneic              | 10      | 6   |
| Complications-related variables |                         |         |     |
| APACHE II score                 | Median                  | 20      |     |
|                                 | Range                   | 3-43    | _   |
| SAPS II score                   | Median                  | 43      | -   |
|                                 | Range                   | 16-93   | _   |
| Admission for                   | Mechanical ventilation  | 98      | 58  |
|                                 | Other reason            | 70      | 42  |
| Renal failure                   | Yes                     | 102     | 61  |
|                                 | No                      | 66      | 39  |
| Shock                           | Yes                     | 95      | 60  |
|                                 | No                      | 73      | 40  |
| Leukocyte count                 | <1000/mm <sup>3</sup>   | 44      | 26  |
|                                 | >1000/mm <sup>3</sup>   | 124     | 74  |
| Platelet count                  | <50,000/mm <sup>3</sup> | 58      | 35  |
|                                 | >50,000/mm <sup>3</sup> | 110     | 65  |

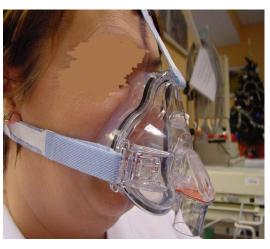
#### Table 2 Outcomes results

| Duration of mechanical ventilation  |          |
|-------------------------------------|----------|
| Median Range                        | 111–183  |
| Weaning from mechanical ventilation | 43 (26%) |
| Discharge from ICU                  | 37 (22%) |
| Duration of ICU stay                |          |
| Median                              | 16       |
| Range                               | 1-244    |
| Discharge from hospital             | 29 (17%) |
|                                     |          |

**Table 3** Univariate prognostic factors analyses for weaning, ICU mortality and hospital mortality

| Variables                |                                 | Wea      | ning | ICU      | mortality | Hospi     | tal mortality |
|--------------------------|---------------------------------|----------|------|----------|-----------|-----------|---------------|
|                          |                                 | %        | P    | %        | P         | %         | P             |
| Sex                      | Male<br>Female                  | 23<br>28 | 0.60 | 80<br>76 | 0.56      | 82<br>82  | 1             |
| Age (years)              | <60<br>>60                      | 26<br>25 | 0.94 | 76<br>80 | 0.62      | 80<br>85  | 0.55          |
| Cancer duration (months) | <14.5<br>>14.5                  | 21<br>30 | 0.29 | 83<br>73 | 0.14      | 88<br>77  | 0.1           |
| Bone marrow graft        | Yes<br>No                       | 27<br>18 | 0.60 | 77<br>82 | 0.79      | 82%<br>86 | 0.86          |
| SAPS II score            | <43<br>>43                      | 31<br>19 | 0.11 | 73<br>83 | 0.19      | 79<br>86  | 0.28          |
| APACHE II score          | <20<br>>20                      | 32<br>19 | 0.08 | 74<br>82 | 0.25      | 79<br>86  | 0.35          |
| Leucopenia               | Yes<br>No                       | 14<br>30 | 0.04 | 89<br>74 | 0.06      | 93<br>79  | 0.06          |
| Thrombopenia             | Yes<br>No                       | 17<br>30 | 0.09 | 83<br>75 | 0.37      | 87<br>80  | 0.28          |
| Shock                    | Yes<br>No                       | 19<br>31 | 0.11 | 85<br>73 | 0.06      | 78<br>87  | 0.20          |
| Renal failure            | Yes<br>No                       | 21<br>28 | 0.39 | 83<br>74 | 0.25      | 81<br>84  | 0.71          |
| Cancer phase             | Diagnosis-curative<br>Other     | 28<br>24 | 0.74 | 77<br>78 | 0.98      | 80<br>84  | 0.68          |
| Cancer status            | Remission<br>Other              | 31<br>26 | 0.76 | 73<br>78 | 0.61      | 76<br>83  | 0.60          |
| Admission cause          | Mechanical ventilation<br>Other | 23<br>30 | 0.41 | 80<br>75 | 0.48      | 83<br>86  | 0.92          |
| Tumour type              | Solid<br>Haematological         | 26<br>25 | 1    | 80<br>75 | 0.59      | 85<br>78  | 0.30          |

Table 4 Multivariate analyses of prognostic factor for weaning, ICU mortality and hospital mortality (n=159)


| Variables                                      | Weaning <sup>a</sup> |           | ICU mortality <sup>b</sup> |      |             | Hospital mortality <sup>c</sup> |      |             |      |
|------------------------------------------------|----------------------|-----------|----------------------------|------|-------------|---------------------------------|------|-------------|------|
|                                                | OR                   | 95% CI    | P                          | OR   | 95% CI      | P                               | OR   | 95% CI      | P    |
| Leucopenia (ref=no)                            | 0.35                 | 0.14-0.89 | 0.03                       | 0.42 | 0.15-1.20   | 0.09                            | 0.23 | 0.06-0.83   | 0.03 |
| Shock (ref=yes)                                | -                    | _         | -                          | 2.04 | 0.90 - 4.63 | 0.08                            | -    | _           | -    |
| Cancer evolution duration (ref=>14.5 months)   | -                    | _         | -                          | 0.49 | 0.22 - 1.07 | 0.07                            | 0.46 | 0.19 - 1.12 | 0.09 |
| Type of tumour (ref=haemalogical malignancies) | -                    | _         | -                          | -    | _           | _                               | 0.45 | 0.19-1.07   | 0.07 |

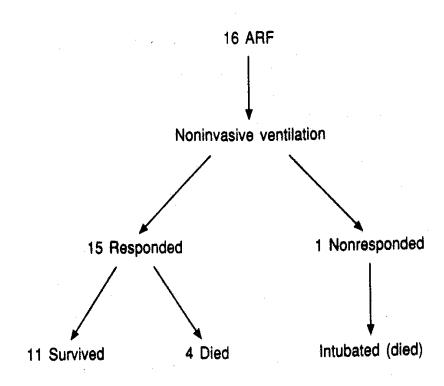
## La ventilation non invasive



### Définition

La ventilation non invasive regroupe les méthodes n'ayant pas recours à l'utilisation de sondes d'intubation ou de trachéotomie mais à des interfaces telles que masque nasal, masque facial ou pièce buccale.






## Bases historiques

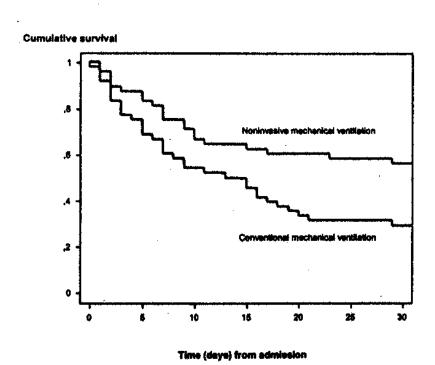
- a été proposée avec succès chez le patient atteint d'hémopathie maligne sans trouble hémodynamique ni neurologique sévère
- 1982 : CPAP efficace dans les pneumopathies extensives graves dans une série de 11 patients permettant d'éviter l'intubation trachéale dans un nombre non négligeable de cas

# La BiPAP oncologie

Noninvasive ventilation (BiPAP) for the treatment of acute respiratory failure in patients with hematologic malignancies: a pilot study par Conti et al (ICM; 24: 1283-8; 1998)



# Ventilation non invasive avec intubation si échec


- C'est l'attitude actuellement recommandée (s'il n'y a pas de contre-indication à la VNI)
- Niveau de preuve : études cas-contrôles historiques
  - Effet sur la mortalité : douteux
  - Diminution séjour USI
  - Moins traumatisant

#### Azoulay, Crit Care Med 29:519-525;2001

Table 4. Characteristics of matched patients with and without exposure to noninvasive mechanical ventilation

| ·                                         |     | $NIMV^2$<br>n = 48) |      | nventional <sup>a</sup><br>V(n = 48) | p Value |
|-------------------------------------------|-----|---------------------|------|--------------------------------------|---------|
| Age (yr)                                  | 51. | 2 (4465)            | 56   | (45-61)                              | .73     |
| Female gender                             |     | (29.2)              | 16   | (33.3)                               | .66     |
| Underlying malignancy                     |     | ,,r                 |      | (                                    |         |
| Acute leukemia and lymphoma               | 33  | (68.7)              | 33   | (68.7)                               | _       |
| Myeloma                                   | 9   | (18.8)              | 9    | (18.8)                               | _       |
| Solid tumors                              | 6   | (12.5)              | 6    | (12.5)                               | _       |
| Time since diagnosis (days)               | 296 | (30-1101)           | 130  |                                      | .89     |
| Poor chronic health status (Knaus C or D) | 17  | (35.4)              | 22   | (45.8)                               | .40     |
| Complete remission                        | 17  | (35.4)              | 16   | (33.3)                               | .83     |
| Comorbidities                             |     |                     |      | ` '                                  |         |
| Heart failure                             | 5   | (10.4)              | 3    | (6.2)                                | .71     |
| COPD                                      | 3   | (6.2)               | 6    | (12.5)                               | .48     |
| Steroids                                  | 19  | (39.6)              | 18   |                                      | .83     |
| Autologous bone marrow                    | 8   | (16.6)              | 13   | (27)                                 | .23     |
| transplantation                           |     | , ,                 |      | ` ,                                  |         |
| Neutropenia                               | 17  | (35.4)              | 22   | (45.8)                               | .47     |
| Admission between 1996 and 1998           | 29  | (60.4)              | 29   | (60.4)                               |         |
| SAPS II score at admission                | 47  | (38-60)             | 44.5 | 5 (36~59)                            | _       |
| Reason for mechanical ventilation         |     | (/                  |      | (00 00)                              |         |
| Hypoxemic acute respiratory failure       | 39  | (81.4)              | 33   | (68.7)                               | .002    |
| Cardiogenic pulmonary edema               | 8   | (16.6)              | 5    | (10.4)                               | .39     |
| Coma                                      | 1   | (2)                 | 10   | (20.8)                               | .004    |
| Reason for ICU admission                  | _   | 1-7                 |      | (/                                   |         |
| Shock                                     | 11  | (22.8)              | 16   | (33.3)                               | .10     |
| Acute respiratory failure and shock       | 5   | (10.4)              | 9    | (18.8)                               | .38     |
| Acute renal failure                       | 6   | (12.5)              | 8    | (16.6)                               | .77     |
| Shock after ventilation                   | ŏ   | (2210)              | 6    | (12.5)                               | .03     |
| P.o./F.o.ratio                            | 175 | (85-187)            | 175  | (158–175)                            | .37     |
| Need for                                  |     | (00 201)            |      | (100 110)                            |         |
| Vasopressors                              | 24  | (50)                | 31   | (64.5)                               | .03     |
| PEEP ≥5 cm H <sub>2</sub> O               | 18  | (37.5)              | 18   | (37.5)                               | .93     |
| Dialysis                                  | 13  | (27)                | 12   | (25)                                 | .76     |
| Steroids                                  | 19  | (39.5)              | 6    | (12.5)                               | .01     |
| Nosocomial infection                      | 8   | (16.6)              | 6    | (12.5)                               | .56     |
| Length of ICU stay                        | •   | (= 3.0)             | •    | (-2.0)                               | 100     |
| All patients                              | 7   | (4-17)              | 7    | (4-10.5)                             | .47     |
| Survivors                                 | 8   | (4-16)              | 19   | (6-34)                               | .04     |
| End-of-life decision                      | ŷ   | (4-10)              | 15   | (14.5)                               | .00     |
| 30-Day mortality rate                     | 21  | (43.7)              | 34   | (70.8)                               | .008    |

NIMV, noninvasive mechanical ventilation; MV, mechanical ventilation; COPD, chronic obstructive pulmonary disease; SAPS, simplified acute physiology score; ICU, intensive care unit; PEEP, positive end-expiratory pressure.



<sup>\*</sup>Data are expressed as n (%) or median (quartiles).

#### Depuydt, Chest 2004; 126(4):1299-1306

Table 4—Characteristics of Matched Patients With and Without Exposure to NPPV\*

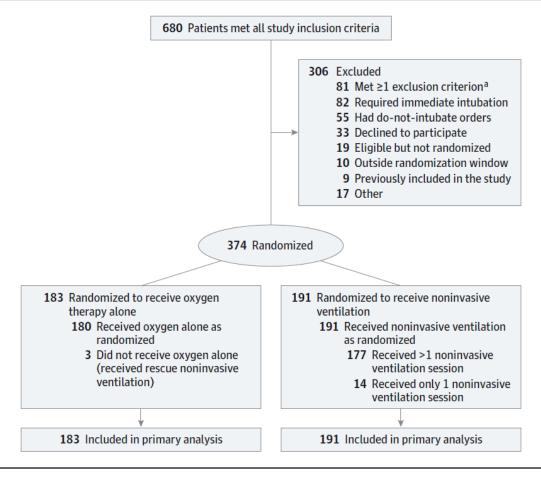
|                             | NPPV         | Invastve MV  |         |
|-----------------------------|--------------|--------------|---------|
| Characteristics             | (n = 26)     | (n = S2)     | p Value |
| Age, yr                     | 44.5 (35–63) | 57.5 (41–69) | 0.06    |
| Female gender               | 8 (30.8)     | 19 (36.5)    | 0.80    |
| Underlying malignancy       |              |              |         |
| AML                         | 9 (34.6)     | 13 (25.0)    | 0.13    |
| ALL                         | 7(26.9)      | 4 (7.7)      |         |
| High-grade NHL              | 2 (7.7)      | 11 (21.2)    |         |
| Low-grade NHL               | 2(7.7)       | 6 (11.5)     |         |
| MM                          | 3 (11.5)     | 12 (23.1)    |         |
| Other                       | 3 (11.5)     | 6 (11.5)     |         |
| Active disease              | 7 (26.9)     | 12 (23.1)    | 0.78    |
| Allogenete BMT              | 5(19.2)      | 8 (15.4)     | 0.75    |
| Leukopenta on ICU admission | 6 (23.1)     | 9 (17.3)     | 0.55    |
| GCS                         | 14.5 (13-15) | 15 (15–15)   | 0.002   |
| SAPS II                     | 46           | 46           |         |
| Paog/Fiog                   | 72 (56–86)   | 147 (78-201) | < 0.001 |
| PEEP level                  | 5 (5-8)      | 5 (5-10)     | 0.17    |
| Vasopressor need            | 7(26.9)      | 25 (48.1)    | 0.89    |
| Bacteremia < 48 h           | 5 (20.0)     | 5 (9.6)      | 0.2     |
| RRT                         | 4 (15.4)     | 18 (34.6)    | 0.08    |
| Leukopenta during ICU stay  | 8 (30.8)     | 17 (32.7)    | 0.99    |
| DNR decision                | 11 (42.3)    | 16 (31.4)    | 0.34    |
| In-hospital mortality       | 17 (65.4)    | 34 (65.4)    | 0.99    |

<sup>\*</sup>Values given as median (interquartile range) or No. (%), unless otherwise indicated.

### Meert, 2005 (2 × 47 patients pairés)

|                                                               | В          | Bras       |       |  |
|---------------------------------------------------------------|------------|------------|-------|--|
| Résultats                                                     | VNI        | VMI        | p     |  |
| Durée ventilation (jour)<br>-médiane (intervalle)             | 3 (1-26)   | 10 (0-47)  | 0,001 |  |
| Durée hospitalisation<br>USI (jours)<br>-médiane (intervalle) | 9 (1-42)   | 16 (1-91)  | 0,01  |  |
|                                                               |            |            |       |  |
| Sortie USI                                                    | 26 (55,3%) | 13 (27,6%) | 0,01  |  |
| Sortie hôpital                                                | 23 (48,9%) | 11 (23,4%) | 0,08  |  |

| Congramo                         |       |           |       |           |       |
|----------------------------------|-------|-----------|-------|-----------|-------|
| Sous-groupe                      | VNI   |           |       | p         |       |
|                                  | N pts | % sorties | N pts | % sorties |       |
| Tumeurs solides                  | 29    | 69        | 28    | 28,6      | 0,02  |
| Hémopathies malignes             | 18    | 33,3      | 19    | 26,3      | 0,63  |
| Patients leucopéniques           | 10    | 10,0      | 10    | 20,0      | 1     |
| Patients non leucopéniques       | 37    | 67,5      | 37    | 29,7      | 0,004 |
| Allo-greffés                     | 9     | 22,2      | 9     | 22,2      | 1     |
| Non allo-greffés                 | 38    | 63,1      | 38    | 28,9      | 0,004 |
| IRA hypoxémiques                 | 34    | 47,0      | 34    | 20,6      | 0,02  |
| IRA hypercapniques               | 10    | 90        | 10    | 40,0      | 0,13  |
| ОРН                              | 3     | 66,6      | 3     | 66,6      | NA    |
| Pairés avec contrôles avant 1996 | 26    | 61,5      | 26    | 11,5      | 0,004 |
| Pairés avec contrôles après 1996 | 21    | 47,6      | 21    | 47,9      | 7     |


#### Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

#### Effect of Noninvasive Ventilation vs Oxygen Therapy on Mortality Among Immunocompromised Patients With Acute Respiratory Failure A Randomized Clinical Trial

Virginie Lemiale, MD; Djamel Mokart, MD; Matthieu Resche-Rigon, MD, PhD; Frédéric Pène, MD, PhD; Julien Mayaux, MD; Etienne Faucher, MD; Martine Nyunga, MD; Christophe Girault, MD, PhD; Pierre Perez, MD; Christophe Guitton, MD, PhD; Kenneth Ekpe, MD; Achille Kouatchet, MD; Igor Théodose, MS; Dominique Benoit, MD, PhD; Emmanuel Canet, MD; François Barbier, MD, PhD; Antoine Rabbat, MD; Fabrice Bruneel, MD; François Vincent, MD; Kada Klouche, MD, PhD; Kontar Loay, MD; Eric Mariotte, MD; Lila Bouadma, MD, PhD; Anne-Sophie Moreau, MD; Amélie Seguin, MD; Anne-Pascale Meert, MD, PhD; Jean Reignier, MD, PhD; Laurent Papazian, MD, PhD; Ilham Mehzari, MD; Yves Cohen, MD, PhD; Maleka Schenck, MD; Rebecca Hamidfar, MD; Michael Darmon, MD, PhD; Alexandre Demoule, MD, PhD; Sylvie Chevret, MD, PhD; Elie Azoulay, MD, PhD; for the Groupe de Recherche en Réanimation Respiratoire du patient d'Onco-Hématologie (GRRR-OH)

JAMA. 2015;314(16):1711-1719. doi:10.1001/jama.2015.12402 Published online October 7, 2015.

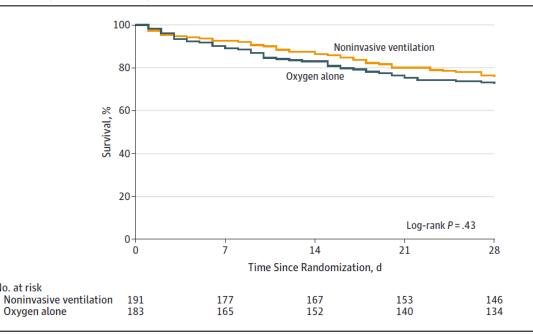
Figure 1. Flow of Participants Through Study



In both groups, oxygenation modalities and the use of highflow nasal oxygen were at the clinician's discretion. Noninvasive ventilation was not allowed for patients allocated to the oxygen group except, if needed, for preoxygenation before intubation or for up 2 hours to improve the safety of bronchoscopy and bronchoalveolar lavage.

Table 1. Patient Characteristics at Randomization

| No. (%)                   |                                                                                                                                                               |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oxygen Alone<br>(n = 183) | Noninvasive<br>Ventilation<br>(n = 191)                                                                                                                       |
| 64 (53-72)                | 61 (52-70)                                                                                                                                                    |
| 105 (57.4)                | 117 (61.3)                                                                                                                                                    |
| 155 (84.7)                | 162 (84.8)                                                                                                                                                    |
|                           |                                                                                                                                                               |
| 113 (61.7)                | 125 (65.4)                                                                                                                                                    |
| 42 (23.0)                 | 37 (19.4)                                                                                                                                                     |
| 28 (15.3)                 | 29 (15.2)                                                                                                                                                     |
| 17 (9.3)                  | 16 (8.4)                                                                                                                                                      |
| 11 (6.0)                  | 13 (6.8)                                                                                                                                                      |
| 84/155 (54.2)             | 86/162 (53.1)                                                                                                                                                 |
| 35/155 (22.6)             | 39/162 (24.1)                                                                                                                                                 |
| 29/155 (18.7)             | 26/162 (16.1)                                                                                                                                                 |
| 19/155 (12.3)             | 18/162 (11.1)                                                                                                                                                 |
|                           | Oxygen Alone (n = 183)  64 (53-72)  105 (57.4)  155 (84.7)  113 (61.7)  42 (23.0)  28 (15.3)  17 (9.3)  11 (6.0)  84/155 (54.2)  35/155 (22.6)  29/155 (18.7) |


Table 3. Primary and Secondary End Points

|                                                     | Oxygen Alone<br>(n = 183) | Noninvasive Ventilation (n = 191) | Absolute Difference (95% CI) | P Value |
|-----------------------------------------------------|---------------------------|-----------------------------------|------------------------------|---------|
| Primary End Point                                   |                           |                                   | · · · ·                      |         |
| All cause 28-d mortality, No. (%)                   | 50 (27.3)                 | 46 (24.1)                         | -3.2 (-12.1 to 5.6)          | .47     |
| Secondary End Points                                |                           |                                   |                              |         |
| Need for invasive mechanical ventilation, No. (%)   | 82 (44.8)                 | 73 (38.2)                         | -6.6 (-16.6 to 3.4)          | .20     |
| SOFA on day 3, median (IQR)                         | 4 (2-6)                   | 4 (2-5)                           | -0.5 (-1.2 to 0.3)           | .17     |
| ICU-acquired infection, No. (%)                     | 46 (25.1)                 | 48 (25.1)                         | 0 (-8.8 to 8.8)              | .99     |
| Length of ICU stay, median (IQR), d                 | 7 (3-16)                  | 6 (3-16)                          | -0.3 (-3.2 to 2.6)           | .55     |
| Duration of mechanical ventilation, median (IQR), d | 14 (6-33)                 | 17 (6-38)                         | 0.3 (-5.7 to 6.3)            | .70     |
| Length of hospital stay, median (IQR), d            | 22 (14-42)                | 24 (12-43)                        | 0.3 (-5 to 5.5)              | .99     |
| Mortality at 6 mo, No. (%) <sup>a</sup>             | 82/181 (45.3)             | 72/182 (39.6)                     | -5.7 (-16.4 to 3.9)          | .23     |
| Good performance status in 6-mo survivors, No. (%)b | 70/75 (93.3)              | 85/91 (93.4)                      | -0.1 (-7.7 to 7.5)           | .98     |

Figure 2. Probability of Survival at Day 28

No. at risk

Oxygen alone



Probability of survival and subgroup analyses of the risk of day-28 mortality Kaplan-Meier estimates of the probability of day-28 mortality in immunocompromised patients with acute respiratory failure receiving either early noninvasive ventilation or oxygen only. Statistical test used the log-rank test.

#### Conclusion

Parmi les patients immunodéprimés admis aux soins intensifs avec une insuffisance respiratoire aiguë hypoxémique, la ventilation non invasive précoce par rapport à l'oxygénothérapie seule n'a pas réduit la mortalité à 28 jours. Cependant, la puissance de l'étude était limitée.

# Ventilation non invasive sans intubation en raison du mauvais pronostic du cancer

Support Care Cancer (2006) 14: 167–171 DOI 10.1007/s00520-005-0845-0

ORIGINAL ARTICLE

Anne-Pascale Meert Thierry Berghmans Michel Hardy Eveline Markiewicz Jean-Paul Sculier Non-invasive ventilation for cancer patients with life-support techniques limitation

Table 1 Patients characteristics and outcome

| Sex      | Age | Cancer        | Stage      | Cause of ARF          | SAPS<br>II | RR | $P_{\rm a}{ m O}_2$ | P <sub>a</sub> CO <sub>2</sub> | рН   | NIV<br>duration | ICU<br>discharge | Hospital<br>discharge |
|----------|-----|---------------|------------|-----------------------|------------|----|---------------------|--------------------------------|------|-----------------|------------------|-----------------------|
| 1 Woman  | 68  | Head and neck | Control    | Pneumonia             | 36         | 35 | 51                  | 43                             | 7.33 | 72              | No               | No                    |
| 2 Man    | 62  | NSCLC         | Control    | Pneumonia             | 42         | 28 | 114                 | 56                             | 7.38 | 6               | Yes              | Yes                   |
| 3 Man    | 65  | NSCLC         | Control    | Pneumonia             | 58         | 27 | 63                  | 26                             | 7.45 | 33              | No               | No                    |
| 4 Woman  | 64  | NSCLC         | Control    | Pneumonia             | 27         | 30 | 47                  | 32                             | 7.48 | 39              | Yes              | Yes                   |
| 5 Woman  | 34  | NSCLC         | Control    | Pneumonia             | 32         | 37 | 33                  | 32                             | 7.43 | 68              | Yes              | Yes                   |
| 6 Man    | 73  | NSCLC         | Control    | Pneumonia             | 33         | 28 | 42                  | 27                             | 7.50 | 5               | Yes              | No                    |
| 7 Man    | 75  | NSCLC         | Pivotal    | Pulmonary<br>embolism | 41         | 33 | 45                  | 43                             | 7.47 | 22              | Yes              | Yes                   |
| 8 Man    | 68  | SCLC          | Control    | Pneumonia             | 43         | 25 | 37                  | 57                             | 7.33 | 11              | Yes              | Yes                   |
| 9 Man    | 69  | SCLC          | Diagnostic | Pneumonia             | 56         | 36 | 42                  | 66                             | 7.29 | 9               | No               | No                    |
| 10 Woman | 76  | Leukemia      | Control    | Acute pulmonary edema | 49         | 29 | 81                  | 69                             | 7.16 | 29              | Yes              | No                    |
| 11 Man   | 80  | Prostate      | Control    | Acute pulmonary edema | 46         | 32 | 94                  | 66                             | 7.27 | 13              | Yes              | No                    |
| 12 Woman | 30  | Bladder       | Control    | Pleural effusion      | 15         | 15 | 55                  | 38                             | 7.47 | 68              | No               | No                    |
| 13 Man   | 29  | NSCLC         | Control    | Pulmonary<br>embolism | 27         | 40 | 26                  | 27                             | 7.46 | 10              | Yes              | Yes                   |
| 14 Man   | 81  | Bladder       | Control    | Pneumonia             | 40         | 28 | 49                  | 29                             | 7.49 | 49              | Yes              | No                    |
| 15 Man   | 68  | NSCLC         | Control    | Acute pulmonary edema | 50         | 22 | 50                  | 65                             | 7.21 | 19              | Yes              | Yes                   |
| 16 Woman | 77  | NSCLC         | Control    | Pneumonia             | 23         | 20 | 31                  | 61                             | 7.30 | 30              | Yes              | Yes                   |
| 17 Man   | 60  | NSCLC         | Control    | Pneumonia             | 47         | 34 | 45                  | 25                             | 7.48 | 70              | Yes              | Yes                   |
| 18 Man   | 46  | Head and neck | Pivotal    | Pneumonia             | 45         | 41 | 48                  | 40                             | 7.42 | 138             | Yes              | Yes                   |

NIV duration is expressed in hours.  $P_aO_2$  and  $P_aCO_2$ , value before NIV (mm Hg) RR Respiratory rate before NIV (breaths/min), NSCLC non-small cell lung cancer, SCLC small cell lung cancer, ARF acute respiratory failure

## VNI « NTBR » Meert, Supp Cancer Care

- Janvier 2000 avril 2004 : 18 patients
- Cause VNI : insuffisance respiratoire hypoxémique (n = 11) et insuffisance ventilatoire hypercapnique (n= 7)
- Durée médiane VNI : 2,5 j (1 à 8)
- 14 sortis vivants de l'USI et 10 de l'hôpital (55 %)

#### Conclusions

- La VNI semble particulièrement efficace chez le patient cancéreux (~50 % de réussite), permettant de réduire le taux d'intubation à 25%.
- L'intubation secondaire est de mauvais pronostic (10 % de réussite).
- La VNI semble aussi efficace chez le patient NTBR.

#### La VMI à l'ère de la VNI

Journal of EUON 16: 160-165, 2011
© 2011 Zerbinis Medical Publications, Printed in Greece

ORIGINAL ARTICLE .

Invasive mechanical ventilation in cancer patients. Prior non invasive ventilation is a poor prognostic factor

- IJB: janvier 2000 à décembre 2007
- 164 patients:
  - VMI d'emblée: 123
  - VMI puis VNI: 41

Table 1. Patient characteristics on admission

| Characteristics                                         | Whole group  | NIV followed by IMV | IMV alone    | p-value |
|---------------------------------------------------------|--------------|---------------------|--------------|---------|
| Number of patients                                      | 164          | 41                  | 123          |         |
| Median age, years (range)                               | 57 (19-81)   | 49 (23-78)          | 59 (20-81)   | 0.008   |
| Gender                                                  |              |                     |              | 0.86    |
| Male, n                                                 | 95           | 23                  | 72           |         |
| Female, n                                               | 69           | 18                  | 51           |         |
| Median SAPS II score (range)                            | 53 (23-94)   | 56 (23-83)          | 47 (30-94)   | 0.002   |
| Type of malignancy, n (%)                               |              |                     |              | < 0.001 |
| Solid tumor                                             | 106 (64.6)   | 16 (39.0)           | 90 (73.2)    |         |
| Haematological malignancy                               | 58 (35.4)    | 25 (61.0)           | 33 (26.8)    |         |
| Bone marrow/Peripheral blood                            | 37 (63.8)    | 19 (76.0)           | 18 (54.5)    | < 0.001 |
| stem cell transplantation, n (%)                        |              |                     |              |         |
| Cancer phase* (1,2 vs. 3,4), n (%)                      |              |                     |              | 0.006   |
| Phase 1                                                 | 5 (3.0)      | 1 (2.4)             | 4 (3.2)      |         |
| Phase 2                                                 | 60 (36.6)    | 23 (56.1)           | 37 (30.1)    |         |
| Phase 3                                                 | 89 (54.3)    | 17 (41.5)           | 72 (58.5)    |         |
| Phase 4                                                 | 10 (6.1)     | 0 (0.0)             | 10 (8.1)     |         |
| Leukopenia at admission, n (%)                          | 40 (24.4)    | 13 (31.7)           | 27 (21.9)    | 0.22    |
| Median PaO <sub>2</sub> /FiO <sub>2</sub> ratio (range) | 215 (46-590) | 183 (52-407)        | 230 (46-590) | 0.02    |

<sup>\*</sup>Cancer phase: 1= diagnostic, 2= curative, 3= controllable but no longer curable, 4= pivotal. IMV= invasive mechanical ventilation, NIV= non invasive ventilation

**Table 2.** Reasons for admission to the intensive care unit

| Reasons for admission         | Whole group<br>(n=164)<br>% | NIV followed by IMV<br>(n=41)<br>% | IMV alone<br>(n=123)<br>% |
|-------------------------------|-----------------------------|------------------------------------|---------------------------|
| Respiratory failure           | 35.3                        | 63.4                               | 26.0                      |
| Sepsis/shock                  | 21.3                        | 14.6                               | 23.5                      |
| Neurologic disease            | 12.1                        | 4.8                                | 14.6                      |
| Abdominal pathology           | 10.3                        | 12.1                               | 9.7                       |
| Heart disease                 | 7.9                         | 2.4                                | 9.7                       |
| Cardiopulmonary resuscitation | 7.3                         | 0.0                                | 9.7                       |
| Acute renal failure           | 4.8                         | 2.4                                | 5.7                       |
| Other                         | 0.6                         | 0.0                                | 0.8                       |

**Table 3.** Complications leading to ventilation

| Complications                 | Whole group<br>(n=164) | NIV followed by IMV<br>(n=41) | IMV alone<br>(n=123) |
|-------------------------------|------------------------|-------------------------------|----------------------|
|                               | %                      | %                             | %                    |
| Sepsis/shock                  | 34.7                   | 34.1                          | 34.9                 |
| Respiratory failure           | 33.5                   | 56.1                          | 24.3                 |
| Cardiopulmonary resuscitation | 15.8                   | _                             | 21.0                 |
| Neurologic disease            | 10.3                   | 4.8                           | 12.1                 |
| Heart disease                 | 3.6                    | _                             | 4.8                  |
| Other                         | 1.8                    | _                             | 2.4                  |

#### Résultats

|                | Total | VMI après<br>VNI | VMI<br>d'emblée |
|----------------|-------|------------------|-----------------|
| Sevrage VM     | 35%   | 21,9%            | 39,8%           |
| Sortie USI     | 28%   | 1,1%             | 31,7%           |
| Sortie hôpital | 24%   | 9,8%             | 27,6%           |

p = 0.02

**Table 5.** Multivariate analysis of variables predicting hospital discharge

| Variable                         |                                                                     | OR (95% CI)      | p-value |
|----------------------------------|---------------------------------------------------------------------|------------------|---------|
| NIV before IMV vs. immediate IMV | Yes vs. no Yes vs. no $\geq 1.1 \text{ vs.} \leq 1.1 \text{ mg/dl}$ | 0.30 (0.09-0.95) | 0.04    |
| Leukopenia                       |                                                                     | 0.21 (0.06-0.77) | 0.02    |
| Serum bilirubin                  |                                                                     | 0.38 (0.16-0.94) | 0.04    |

# La place controversée de la VNI dans le SDRA

Journal of Critical Care 38 (2017) 295-299



Contents lists available at ScienceDirect

#### Journal of Critical Care

journal homepage: www.jccjournal.org



Noninvasive ventilation during acute respiratory distress syndrome in patients with cancer: Trends in use and outcome



A. Neuschwander, MD<sup>a</sup>, V. Lemiale, MD<sup>a</sup>, M. Darmon, PhD<sup>b</sup>, F. Pène, PhD<sup>c</sup>, A. Kouatchet, MD<sup>d</sup>, P. Perez, MD<sup>e</sup>, F. Vincent, MD<sup>f</sup>, J. Mayaux, MD<sup>g</sup>, D. Benoit, PhD<sup>h</sup>, F. Bruneel, MD<sup>i</sup>, A.P. Meert, PhD<sup>j</sup>, M. Nyunga, MD<sup>k</sup>, A. Rabbat, MD<sup>l</sup>, D. Mokart, PhD<sup>m</sup>, E. Azoulay, PhD<sup>a,\*</sup>,

A Groupe de Recherche en Réanimation Respiratoire en Onco-Hématologie (GRRR-OH) study:

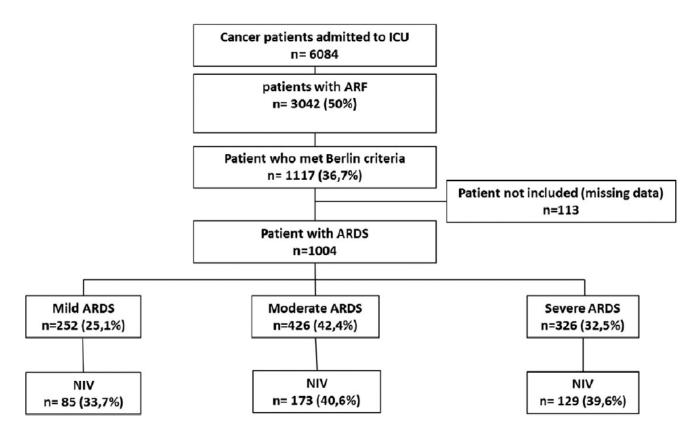



Fig. 2. Flowchart.

#### 1004 cas en 20 ans

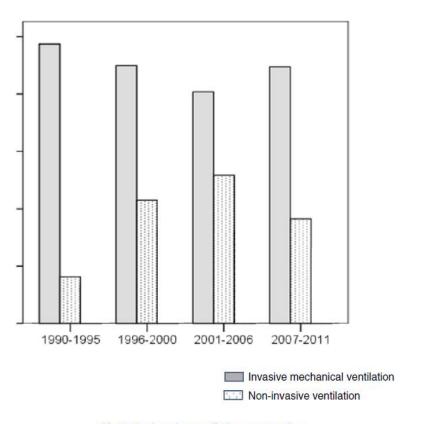



Fig. 1. Noninvasive ventilation use over time.

**Table 1**Patients characteristics according to ventilation strategy

| Variables                           | Patients who never receive NIV (n = 617) | Patient who receive NIV (n = 387) | P     |
|-------------------------------------|------------------------------------------|-----------------------------------|-------|
| Baseline characteristics            |                                          |                                   |       |
| Age (y), median [IQR]               | 58 [48-67]                               | 57 [46-67]                        | .31   |
| Sex, male                           | 393 (63.7)                               | 249 (64.3)                        | .88   |
| Underlying disease                  |                                          |                                   | <.001 |
| Hematologic malignancy              | 495 (80.2)                               | 364 (94)                          |       |
| Acute leukemia                      | 171 (27.7)                               | 127 (32.8)                        |       |
| Non-Hodgkin lymphoma                | 189 (30.6)                               | 129 (33.3)                        |       |
| Myeloma                             | 76 (12.3                                 | 37 (9.6)                          |       |
| Solid tumor                         | 122 (19.7)                               | 23 (5.9)                          |       |
| Allogenic stem cell transplantation | 55 (8.9)                                 | 60 (15.5)                         | .002  |
| ARDS etiology                       | ,                                        |                                   |       |
| Pulmonary Infection                 | 379 (61.4)                               | 283 (73.1)                        | .002  |
| Extrapulmonary infection            | 170 (27.5)                               | 55 (14.2)                         | <.001 |
| Fungus                              | 195 (31.6)                               | 98 (25.3)                         | .005  |
| Pneumocystis                        | 16 (2.6)                                 | 48 (12.4)                         | <.001 |
| Undetermined                        | 15 (2.4)                                 | 26 (6.7)                          | .003  |
| Neutropenia recovery                | 288 (46.7)                               | 156 (40.3)                        | .056  |
| SOFAc J1                            | 9 [7-11]                                 | 7 [4-9]                           | <.001 |
| Shock                               | 502 (81.4)                               | 229 (59.1)                        | <.001 |
| Acute kidney failure                | 219 (35.5)                               | 87 (22.5)                         | <.001 |
| Severity of ARDS                    |                                          |                                   |       |
| Mild                                | 167 (27)                                 | 85 (21.9)                         | .18   |
| Moderate                            | 253 (41)                                 | 173 (44.7)                        |       |
| Severe                              | 197 (31.9)                               | 129 (33.3)                        |       |
| Outcome                             |                                          |                                   |       |
| ICU mortality                       | 394 (63.8)                               | 171 (44.1)                        | <.001 |
| Hospital mortality                  | 427 (69.2)                               | 213 (55.0)                        | <.001 |

SOFAc indicates SOFA score without respiratory parameter.

**Table 2** Patients characteristics according to NIV failure

| Variables                           | NIV success (n = 111) | NIV failure<br>(n = 276) | P     |
|-------------------------------------|-----------------------|--------------------------|-------|
| Baseline characteristics            |                       |                          |       |
| Age (y), median (IQR]               | 56 [46-65]            | 57 [46-67]               | .40   |
| Sex, male                           | 46 (41.4)             | 92 (33.3)                | .17   |
| Underlying disease                  |                       |                          | .32   |
| Hematologic malignancy              | 107 (96.9)            | 257 (93.1)               |       |
| Solid tumor                         | 4 (3.6)               | 19 (6.8)                 |       |
| Allogenic stem cell transplantation | 22 (19.8)             | 38 (13.8)                | .18   |
| ARDS etiology                       |                       |                          |       |
| Pulmonary Infection                 | 74 (66.6)             | 209 (75.7)               | .09   |
| Extrapulmonary infection            | 20 (18.1)             | 35 (12.7)                | .20   |
| Fungus                              | 19 (17.1)             | 79 (28.6)                | .02   |
| Pneumocystis                        | 23 (20.7)             | 25 (9.1)                 | .003  |
| Undetermined                        | 11 (0.09)             | 15 (0.05)                | .11   |
| Neutropenia recovery                | 34 (30.6)             | 122 (44.2)               | .019  |
| SOFAc J1, median (IQR]              | 7 [3-8]               | 8 [5-10]                 | <.001 |
| Shock                               | 21 (18.9)             | 208 (75.4)               | <.001 |
| Acute kidney failure                | 2 (1.8)               | 85 (30.8)                | <.001 |
| Severity of ARDS                    |                       |                          |       |
| Mild                                | 31 (27.9)             | 54 (19.6)                | .13   |
| Moderate                            | 53 (47.8)             | 120 (43.4)               |       |
| Severe                              | 27 (24.3)             | 102 (36.9)               |       |

SOFAc indicates SOFA score without respiratory parameter.

**Table 3**Factors associated with NIV failure

|                                                      | OR (95% CI)                          | P                |
|------------------------------------------------------|--------------------------------------|------------------|
| Sex, male                                            | 0.66 (0.41-1.07)                     | .053             |
| Mild ARDS<br>Moderate ARDS                           | 1.28 (0.73-2.28)                     | Reference<br>.28 |
| Severe ARDS                                          | 2.08 (1.10-3.93)                     | .02              |
| SOFAc                                                | 1.15 (1.08-1.23)                     | <.001            |
| Pulmonary infection-related ARDS<br>Fungal infection | 1.77 (1.06-2.98)<br>1.90 (1.06-3.41) | .03<br>.03       |

SOFAc indicated SOFA score without respiratory parameter.

**Table 4**Factors associated with hospital mortality

|                                                      | OR (95% CI)                          | P            |
|------------------------------------------------------|--------------------------------------|--------------|
| Solid tumor (vs hematologic malignancy)<br>Mild ARDS | 0.45 (0.19-1.09)                     | .08          |
| Moderate ARDS                                        | 0.92 (0.53-1.60)                     | .77          |
| Severe ARDS<br>SOFAc                                 | 1.99 (1.09-4.28)<br>1.11 (1.04-1.19) | .02<br>.001  |
| NIV failure<br>Extrapulmonary infection              | 2.63 (1.63-4.28)<br>1.78 (0.94-3.37) | <.001<br>.08 |

SOFAc indicates SOFA score without respiratory parameter.

#### Conclusion

L'échec de ventilation non invasive chez les patients atteints de SDRA avec une tumeur maligne est fréquent et lié à la gravité du SDRA, au score SOFA et au SDRA lié à une infection pulmonaire.

L'échec de la ventilation non invasive est associé à la mortalité hospitalière.

## Les nouvelles techniques

- L'oxygène à haut débit
- L'ECMO

### L'oxygène à haut débit

Intensive Care Med (2015) 41:2008–2010 DOI 10.1007/s00134-015-3994-8

Djamel Mokart Cyrille Geay Laurent Chow-Chine Jean-Paul Brun Marion Faucher Jean-Louis Blache Magali Bisbal Antoine Sannini

#### High-flow oxygen therapy in cancer patients with acute respiratory failure

Accepted: 14 July 2015

Published online: 4 August 2015

© Springer-Verlag Berlin Heidelberg and

ESICM 2015

#### Electronic supplementary material

The online version of this article (doi:10.1007/s00134-015-3994-8) contains supplementary material, which is available to authorized users.

Research

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

# Effect of High-Flow Nasal Oxygen vs Standard Oxygen on 28-Day Mortality in Immunocompromised Patients With Acute Respiratory Failure The HIGH Randomized Clinical Trial

Elie Azoulay, MD, PhD; Virginie Lemiale, MD; Djamel Mokart, MD, PhD; Saad Nseir, MD, PhD; Laurent Argaud, MD, PhD; Frédéric Pène, MD, PhD; Loay Kontar, MD; Fabrice Bruneel, MD; Kada Klouche, MD, PhD; François Barbier, MD, PhD; Jean Reignier, MD, PhD; Lilia Berrahil-Meksen, MD; Guillaume Louis, MD; Jean-Michel Constantin, MD, PhD; Julien Mayaux, MD; Florent Wallet, MD; Achille Kouatchet, MD; Vincent Peigne, MD; Igor Théodose, MS; Pierre Perez, MD; Christophe Girault, MD; Samir Jaber, MD, PhD; Johanna Oziel, MD; Martine Nyunga, MD; Nicolas Terzi, MD, PhD; Lila Bouadma, MD, PhD; Christine Lebert, MD; Alexandre Lautrette, MD, PhD; Naike Bigé, MD, PhD; Jean-Herlé Raphalen, MD; Laurent Papazian, MD, PhD; Michael Darmon, MD, PhD; Sylvie Chevret, MD, PhD; Alexandre Demoule, MD, PhD

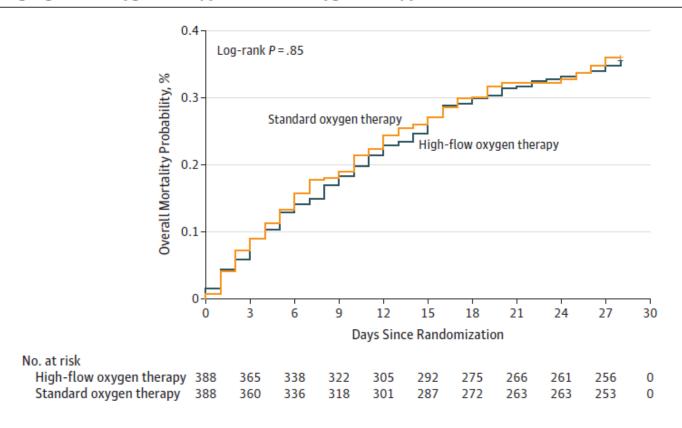
Table 1. Patient Characteristics at Randomization

|                                                                | No. (%)                     |                            |
|----------------------------------------------------------------|-----------------------------|----------------------------|
|                                                                | High-Flow<br>Oxygen Therapy | Standard<br>Oxygen Therapy |
| Characteristic                                                 | (n = 388)                   | (n = 388)                  |
| Demographics                                                   |                             |                            |
| Age, median (IQR), y                                           | 64 (55-70)                  | 63 (56-71)                 |
| Sex                                                            |                             |                            |
| Men                                                            | 270 (69.6)                  | 247 (63.6)                 |
| Women                                                          | 118 (30.4)                  | 141 (36.4)                 |
| Comorbidities                                                  |                             |                            |
| Chronic                                                        |                             |                            |
| Respiratory <sup>a</sup>                                       | 115 (29.6)                  | 127 (32.7)                 |
| Heart failure                                                  | 23 (5.9)                    | 27 (6.9)                   |
| Liver                                                          | 45 (13.3)                   | 56 (14.4)                  |
| Kidney disease                                                 | 73 (18.8)                   | 69 (20.4)                  |
| Charlson Comorbidity Index <sup>b</sup>                        | 5 (4-7)                     | 5 (3-7)                    |
| Underlying conditions <sup>c</sup>                             |                             |                            |
| Cancer                                                         | 294 (75.8)                  | 319 (82.2)                 |
| Hematologic malignancies                                       | 167 (43.0)                  | 181 (46.6)                 |
| Solid tumors                                                   | 127 (32.7)                  | 138 (35.6)                 |
| Immunosuppressive drugs                                        | 133 (34.3)                  | 135 (34.8)                 |
| Non-transplant-related reasons                                 | 89 (22.9)                   | 98 (25.2)                  |
| After solid organ transplantation                              | 44 (11.3)                   | 37 (9.5)                   |
| Time since diagnosis of underlying condition, median (IQR), mo | 6.4 (1-29)                  | 7.0 (0.8-40.0)             |
| Chemotherapy at ICU admission                                  | 221/294 (75.2)              | 228/319 (71.5)             |
| Autologous stem cell transplantation                           | 26/167 (15.6)               | 22/181 (12.1)              |
| Allogeneic stem cell transplantation                           | 28/167 (16.8)               | 33/181 (18.2)              |
| Poor performance status (3 or 4) <sup>d</sup>                  | 61 (15.7)                   | 54 (13.9)                  |

| Table 2. Primary and Secondary End Points <sup>a</sup> |                                       |                                      |                                          |                                      |         |  |  |  |
|--------------------------------------------------------|---------------------------------------|--------------------------------------|------------------------------------------|--------------------------------------|---------|--|--|--|
|                                                        | No. (%)                               |                                      |                                          |                                      |         |  |  |  |
| End Points                                             | High-Flow Oxygen<br>Therapy (n = 388) | Standard Oxygen<br>Therapy (n = 388) | Mean Difference, % (95% CI) <sup>b</sup> | Relative Difference (95% CI)         | P Value |  |  |  |
| Primary                                                |                                       |                                      |                                          |                                      |         |  |  |  |
| All-cause day-28 mortality                             | 138 (35.6)                            | 140 (36.1)                           | -0.5 (-7.3 to 6.3)                       | HR, 0.98 (0.77 to 1.24)              | .94     |  |  |  |
| Secondary                                              |                                       |                                      |                                          |                                      |         |  |  |  |
| Invasive mechanical ventilation <sup>c</sup>           | 150 (38.7)                            | 170 (43.8)                           | -5.1 (-12.3 to 2.0)                      | HR, 0.85 (0.68 to 1.06) <sup>d</sup> | .17     |  |  |  |
| ICU-acquired infection                                 | 39 (10.0)                             | 41 (10.6)                            | -0.6 (-4.6 to 4.1)                       | HR, 1.01 (0.96 to 1.06) <sup>d</sup> | .91     |  |  |  |
| ICU mortality                                          | 123 (31.7)                            | 122 (31.4)                           | 0.3 (-6.3 to 6.8)                        | RR, 1.01 (0.82 to 1.24)              | .64     |  |  |  |
| Hospital mortality                                     | 160 (41.2)                            | 162 (41.7)                           | -0.5 (-7.5 to 6.4)                       | RR, 0.99 (0.84 to 1.17)              | .77     |  |  |  |
| Length of stay, median (IQR), o                        | i                                     |                                      |                                          |                                      |         |  |  |  |
| ICU                                                    | 8 (4-14)                              | 6 (4-13)                             | 0.6 (-1.0 to 2.2)                        | NA <sup>e</sup>                      | .07     |  |  |  |

-2 (-7.3 to 3.3)

27 (15-42)


24 (14-40)

Hospital

NAe

.60

Figure 2. Probability of Day-28 Mortality in Immunocompromised Patients With Acute Respiratory Failure Receiving High-Flow Oxygen Therapy or Standard Oxygen Therapy



#### Conclusion

Parmi les patients immunodéprimés gravement malades souffrant d'insuffisance respiratoire aiguë, l'oxygénothérapie à haut débit n'a pas diminué de manière significative la mortalité au jour 28 par rapport à l'oxygénothérapie standard.

#### **ECMO**

Wohlfarth et al. Critical Care 2014, **18**:R20 http://ccforum.com/content/18/1/R20



RESEARCH Open Access

# Extracorporeal membrane oxygenation in adult patients with hematologic malignancies and severe acute respiratory failure

Philipp Wohlfarth<sup>1</sup>, Roman Ullrich<sup>2</sup>, Thomas Staudinger<sup>1</sup>, Andja Bojic<sup>1</sup>, Oliver Robak<sup>1</sup>, Alexander Hermann<sup>1</sup>, Barbara Lubsczyk<sup>2</sup>, Nina Worel<sup>3</sup>, Valentin Fuhrmann<sup>4</sup>, Maria Schoder<sup>5</sup>, Martin Funovics<sup>5</sup>, Werner Rabitsch<sup>1</sup>, Paul Knoebl<sup>1</sup>, Klaus Laczika<sup>1</sup>, Gottfried J Locker<sup>1</sup>, Wolfgang R Sperr<sup>1</sup>, Peter Schellongowski<sup>1\*</sup> and Arbeitsgruppe für hämato-onkologische Intensivmedizin der Österreichischen Gesellschaft für Internistische und Allgemeine Intensivmedizin und Notfallmedizin (ÖGIAIN)

Table 1 Individual characteristics and outcomes

| Patient number | Malignancy                         | Therapy status (days since therapy) | Etiology<br>of ARF | SAPS II | LIS | ECMO days       | Bleeding | ICU and hospital outcome |
|----------------|------------------------------------|-------------------------------------|--------------------|---------|-----|-----------------|----------|--------------------------|
| 1              | CNS NHL                            | Chemotherapy (51)                   | Pneumonia          | 45      | 3.7 | 9               | Minor    | Died                     |
| 2              | Hodgkin lymphoma                   | Allo SCT (111)                      | Pneumonia          | 34      | 3.3 | 28 <sup>b</sup> | Major    | Died                     |
| 3              | ALL                                | Consolidation (13)                  | Abdominal sepsis   | 78      | 2.3 | 4 <sup>c</sup>  | -        | Alive                    |
| 4              | ALLa                               | Induction on ECMO                   | TRALI              | 62      | 3.3 | 3               | -        | Alive                    |
| 5              | Burkitt lymphoma                   | Induction (16)                      | Pneumonia          | 63      | 3.8 | 8               | -        | Alive                    |
| 6              | ALL                                | Allo SCT (31)                       | Pneumonia          | 39      | 3.5 | 7               | Major    | Died                     |
| 7              | Hodgkin lymphoma                   | Allo SCT (33)                       | Pneumonia          | 65      | 3.3 | 18              | -        | Died                     |
| 8              | ALL                                | Allo SCT (203)                      | Pneumonia          | 68      | 3.3 | 10              | -        | Died                     |
| 9              | DLBCL                              | Induction on ECMO                   | Pneumonia          | 102     | 4.0 | 4               | -        | Died                     |
| 10             | Multiple myeloma                   | Auto SCT (789)                      | Pneumonia          | 43      | 3.7 | 9               | Major    | Alive                    |
| 11             | Anaplastic T-cell NHL <sup>a</sup> | Induction on ECMO                   | Pneumonia          | 46      | 3.0 | 25 <sup>d</sup> | Major    | Alive                    |
| 12             | DLBCL <sup>a</sup>                 | Induction on ECMO                   | NHL                | 36      | 3.3 | 3 <sup>c</sup>  | -        | Alive                    |
| 13             | AML                                | Consolidation (34)                  | Pneumonia          | 48      | 3.3 | 34              | Major    | Died                     |
| 14             | DLBCLa                             | Induction on ECMO                   | NHL                | 56      | 2.3 | 4 <sup>d</sup>  | -        | Alive                    |

#### Characteristics and Outcome of Patients After Allogeneic Hematopoietic Stem Cell Transplantation Treated With Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome\*

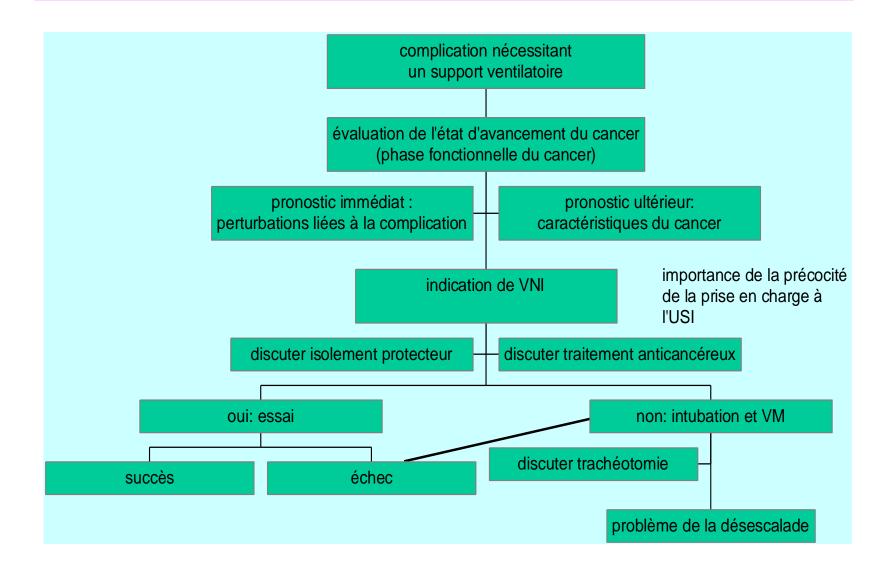

Philipp Wohlfarth, MD¹; Gernot Beutel, MD²; Pia Lebiedz, MD³; Hans-Joachim Stemmler, PhD⁴; Thomas Staudinger, MD¹; Matthieu Schmidt, PhD⁵; Matthias Kochanek, MD⁶; Tobias Liebregts, MD⁷; Fabio Silvio Taccone, PhD®; Elie Azoulay, PhD⁰; Alexandre Demoule, PhD¹⁰,¹¹; Stefan Kluge, MD¹²; Morten Svalebjørg, MD¹³; Catherina Lueck, MD²; Johanna Tischer, MD⁴; Alain Combes, PhD⁵; Boris Böll, MD⁶; Werner Rabitsch, MD¹; Peter Schellongowski, MD¹ on behalf of Intensive Care in Hematologic and Oncologic Patients (iCHOP) and the Caring for Critically Ill Immunocompromised Patients Multinational Network (NINE-I)

TABLE 1. Allogeneic Hematopoietic Stem Cell Transplantation-Related Characteristics

| Variable                          | All Patients (n = 37) | Nonsurvivors (n = 30) | Survivors $(n = 7)$ | p        |
|-----------------------------------|-----------------------|-----------------------|---------------------|----------|
| Underlying condition              |                       |                       |                     | 0.000947 |
| Acute leukemia                    | 22 (59)               | 21 (70)               | 1 (14)              |          |
| Lymphoma                          | 5 (14)                | 5 (17)                | 0                   |          |
| Myelodysplastic syndrome          | 3 (8)                 | 0                     | 3 (43)              |          |
| Other malignant condition         | 4 (11)                | 2 (7)                 | 2 (29)              |          |
| Nonmalignant disease              | 3 (8)                 | 2 (7)                 | 1 (14)              |          |
| Conditioning therapy <sup>a</sup> |                       |                       |                     | 0.27     |
| Myeloablative                     | 27 (79)               | 24 (83)               | 3 (60)              |          |
| Nonmyeloablative                  | 7 (21)                | 5 (17)                | 2 (40)              |          |

|                                       | All Patients (n = 37) | Nonsurvivors (n = 30) | Survivors $(n=7)$  | p      |
|---------------------------------------|-----------------------|-----------------------|--------------------|--------|
| Characteristics during ECMO           |                       |                       |                    |        |
| Vasopressors                          | 29 (78)               | 24 (80)               | 5 (71)             | 0.63   |
| Hemofiltration                        | 19 (51)               | 16 (53)               | 3 (43)             | 0.69   |
| Bleeding event                        | 14 (38)               | 12 (40)               | 2 (29)             | 0.69   |
| Neutropenia                           | 18 (49)               | 15 (50)               | 3 (43)             | 1.0    |
| Lowest platelets, G/L                 | 8 (5–17)              | 8 (5–14)              | 8 (2-54)           | 0.69   |
| Packed red cells (0-5/5-10/>10)b      | 8 (23)/11 (31)/16 (46 | 6 (21)/9 (32)/13 (46) | 2 (29)/2 (29)/3 (4 | 3) 1.0 |
| Platelet transfusions (0-5/5-10/>10)b | 11(31)/9 (26)/15 (41) | 7 (25)/9 (32)/12 (43) | 4 (57)/0/3 (43)    | 0.15   |
| Outcome                               |                       |                       |                    |        |
| Duration of ECMO therapy, d           | 15 (8–23)             | 15 (8–23)             | 10 (4–13)          | 0.20   |
| ICU length of stay, d                 | 28 (14–33)            | 22 (12–35)            | 28 (25-49)         | 0.28   |
| ICU and hospital survival             | 7 (19)                |                       |                    |        |

### La ventilation en pratique

