Les complications cardiovasculaires V

Prévention secondaire

- Infarctus myocardique
- AVC
- Artériopathie MI

Contextes pathologiques particuliers

- SIDA
- Cancer guéri

Prévention secondaire

Maladie athéromateuse

TABLEAU 1

Localisations préférentielles et évolution de l'athérome

Localisations artérielles	Plaque symptomatique	Rupture de plaque
Coronaires	Angor stable	Syndrome coronarien aigu
Aorte abdominale	Anévrisme	Embole périphérique
Carotides, vertébrales	AIT	AVC ischémique
Périphériques	Artériopathie oblitérante	Ischémie aiguë
Rénales	Sténose de l'artère rénale	Thrombose de l'artère rénale
Mésentériques	Angor mésentérique	Ischémie mésentérique

AIT : accident ischémique transitoire ; AVC : accident vasculaire cérébral.

TABLEAU 2

Bilan d'extension de la maladie athéromateuse

Localisation	Symptômes	Examens complémentaires
Coronaire	 Angor, dyspnée, blockpnée, palpitations 	■ ECG de repos ■ ± épreuve d'effort, scintigraphie myocardique, coronarographie
Cérébrale	 Accident ischémique transitoire, séquelles d'AVC, souffle carotidien 	 ■ Doppler des troncs supra-aortiques ± doppler transcrânien ■ TDM et IRM cérébrales
Périphérique	 Claudication intermittente Abolition de pouls, souffle iliaque, fémoral ou poplité Troubles trophiques Index de pression systolique 0,90 	Mesure de l'indice de pression systolique (IPS)
Aorte	 Masse battante périombilicale expansive en systole Souffle systolique périombilical 	■ Doppler de l'aorte abdominale ■ ± angio-TDM de l'aorte, angio-IRM de l'aorte
Rénale	Hypertension artérielle résistanteSouffle para-ombilical	 Hypokaliémie, insuffisance rénale Doppler des artères rénales Angio-IRM
Mésentérique	■ Douleur et météorisme abdominal post-prandiaux	 Angio-TDM ou IRM Artériographie cœlio- mésentérique

AVC : accident vasculaire cérébral ; ECG : électrocardiogramme ; IRM : imagerie par résonance magnétique ; TDM : tomodensitométrie.

Prévention secondaire IDM

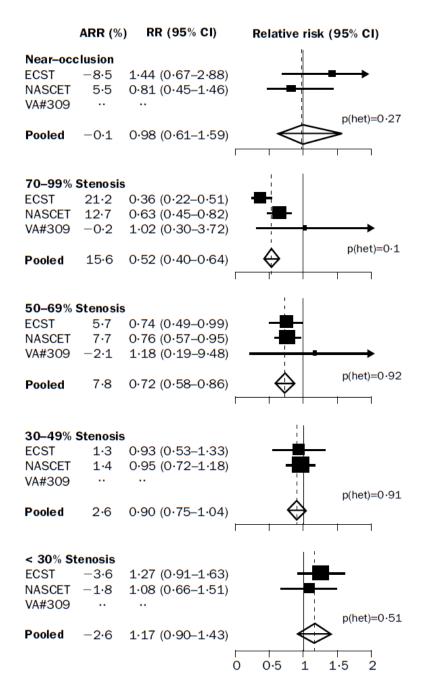
- statine (pravastatine, simvastatine) avec une LDL-cholestérolémie initiale > 100 mg/dl : 2 morts évitées pour 100 patients traités à 5 ans pour une mortalité de 9 % dans le bras placebo
- arrêt du tabagisme
- aspirine (75 mg/j) : réduction de 1 à 2 accidents chaque année pour 100 patients traités (réduction de 1% de la mortalité après 2 à 3 ans de traitement)
- un β-bloquant
- IEC

Prévention secondaire AVC

Risque annuel de récidive : 6% (dont un quart mortelle)

- mesures hygiéno-diététiques : arrêt du tabac, consommation d'alcool modérée, lutte contre l'obésité, lutte contre la sédentarité, réduction de la consommation de sel et de graisses saturées.
- aspirine : 75 à 325 mg/jour (évite par an 10 à 20 récidives d'AVC et 6 morts pour 1000 traités)
 - en cas d'allergie à l'aspirine : clopidrogel
- en cas de fibrillation auriculaire ou de cardiopathie embolique : anti-vitamine K avec INR entre 2 et 3 (risque d'AVC par an tombe de 19% sans traitement à 12% avec l'aspirine et à 6% avec les anti-vitamines K).
- traitement anti-hypertenseur (diurétiques) si TA >140/80 mmHg.
- statine : diminue le risque d'accident coronarien sans effet démontré sur le risque de récidive d'AVC ou sur la mortalité.
- en cas de sténose carotidienne (à diagnostiquer dans les 15 jours suivant l'AVC) : endartériectomie dans les 3 mois réduit le risque d'environ 16 récidives pour 100 patients traités si sténose de 70 à 99%. Le risque opératoire initial est de 5%.

Sténose carotidienne symptomatique


ARTICLES

Analysis of pooled data from the randomised controlled trials of endarterectomy for symptomatic carotid stenosis

P M Rothwell, M Eliasziw, S A Gutnikov, A J Fox, D W Taylor, M R Mayberg, C P Warlow, H J M Barnett, for the Carotid Endarterectomy Trialists' Collaboration

Lancet 2003; **361**: 107–16

Intérêt d'une endartériectomie chez les patients présentant une sténose carotidienne symptomatique d'au moins 50%, avec un bénéfice marginal en cas de sténose de 50-69% et bénéfice important en cas de sténose ≥ 70% mais sans bénéfice en cas de sténose subocclusive (quasi complète).

Sténose carotidienne asymptomatique

Carotid endarterectomy or stenting or best medical treatment alone for moderate-to-severe asymptomatic carotid artery stenosis: 5-year results of a multicentre, randomised controlled trial

Tilman Reiff, Hans-Henning Eckstein, Ulrich Mansmann, Olav Jansen, Gustav Fraedrich, Harald Mudra, Dittmar Böckler, Michael Böhm, E Sebastian Debus, Jens Fiehler, Klaus Mathias, Erich B Ringelstein, Jürg Schmidli, Robert Stingele, Ralf Zahn, Thomas Zeller, Wolf-Dirk Niesen, Kristian Barlinn, Andreas Binder, Jörg Glahn, Werner Hacke, Peter Arthur Ringleb, for the SPACE-2 Investigators*

Summary

Background The optimal treatment for patients with asymptomatic carotid artery stenosis is under debate. Since best Lancet Neurol 2022; 21: 877-88 medical treatment (BMT) has improved over time, the benefit of carotid endarterectomy (CEA) or carotid artery stenting (CAS) is unclear. Randomised data comparing the effect of CEA and CAS versus BMT alone are absent. We aimed to directly compare CEA plus BMT with CAS plus BMT and both with BMT only.

See Comment page 858 *The SPACE-2 Investigators are listed at the end of the report

L'incidence cumulée de tout AVC ou décès quelle qu'en soit la cause dans les 30 jours ou de tout AVC ischémique homolatéral dans les 5 ans (critère d'évaluation principal) a été de 2,5 % (IC à 95 % 1,0-5,8) dans le bras 1 (endartériectomie), 4,4 % (2,2–8,6) dans le bras 2 (stent), et 3,1 % (1,0–9,4) dans le bras 3 (traitement médical). La différence entre les groupes de traitement n'était pas significative (p=0.62)

	CEA (n=203)	CAS (n=197)	BMT (n=113)	p value*
Primary endpoint event	5 (2.5% [1.0–5.8])	8 (4.4% [2.2–8.6])	3 (3.1% [1.0–9.4])	0.62
Secondary outcome events	i			
lpsilateral ischaemic stroke	4 (2.0% [0.7–5.2])	8 (4.4% [2.2–8.6])	3 (3.1% [1.0–9.4])	0.45
Any ischaemic or haemorrhagic stroke	10 (5.3% [2.9–9.6])	17 (9.8% [6.2–15.3])	6 (6.5% [2.9–13.9])	0.28
Death from any cause	13 (7.6% [4.5–12.8])	15 (9.3% [5.7–15.0])	8 (8.0% [4.1–15.4])	0.88
Any ischaemic stroke	10 (5.3% [2.9–9.6])	16 (9.2% [5.7–14.7])	5 (5.5% [2.3–12.7])	0.29
Any disabling stroke†	2 (1.0% [0.3–4.0])	3 (1.7% [0.6–5.2])	2 (2.0% [0.5–7.6])	0.82
lpsilateral disabling stroke	0	1 (0.5%; 0.1–3.6)	2 (2.0%; 0.5–7.6)	0.14
Any ischaemic stroke or vascular death‡	15 (8.1% [4.9–13.1])	24 (14·1% [9·7–20·4])	9 (9.4% [5.0–17.4])	0.23
Re-stenosis ≥70%§¶	6 (3.2% [1.5-7.1])	18 (10·2% [6·6–15·8])		0.0092
Re-stenosis and progressive stenosis **	6 (3.2% [1.5-7.1])	18 (10-2% [6-6-15-8])	14 (14·6% [8·9–23·5])	0.0050
Vascular death	5 (2.9% [1.2-6.8])	9 (5.6% [3.0–10.6])	4 (4.2% [1.6–10.8])	0.52
Myocardial infarction	10 (6.3% [3.4-11.3])	8 (5.1% [2.6–10.0])	2 (2.7% [0.7–10.4])	0.42
Any transient ischaemic attack**	10 (5.7% [3.1–10.4])	10 (5.5% [3.0–9.9])	8 (8-2% [4-1–15-8])	0.67
lpsilateral transient ischaemic attack**	2 (1.0% [0.3–3.9])	8 (4.3% [2.2–8.4])	8 (8-2% [4-1–15-8])	0.0168
Data are number of events (cu were counted from after rando			*	

were counted from after randomisation. All other outcome events were counted from after randomisation for BMT of from after the intervention for either CEA or CAS. CEA=carotid endarterectomy. CAS=carotid artery stenting.

BMT=best medical treatment. *Log-rank test for equality of survivor functions. †modified Rankin Scale score > 2 at 30 days after stroke. ‡One patient who underwent CAS had both secondary endpoint events (stroke and later death) but was counted only once. §Reported according to European Carotid Surgery Trial criteria. ¶Re-stenosis only in the CEA and CAS groups. ||Re-stenosis only in the CEA and CAS groups and progressive stenosis only in the BMT group.

**Exploratory analysis.

 $\textit{Table 2: Kaplan-Meier estimates of cumulative incidence of outcome events within 5\,years}$

Anticoagulation dans la fibrillation auriculaire

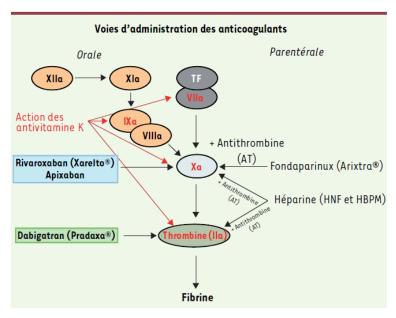


Figure 1. Schéma simplifié de la cascade de la coagulation et mode d'action des nouveaux anticoagulants oraux rivaroxaban, apixaban et dabigatran. La nomenclature des facteurs de coagulation utilise des chiffres romains suivi de a pour activé. Le traitement par les médicaments antivitamine K bloque la γ-carboxylation des facteurs de coagulation synthétisés dans le foie (ici en caractères rouges), une étape de maturation des protéines essentielle à leur activité enzymatique. Les héparines ont une action anticoagulante indirecte, dépendante de l'antithrombine, et inhibent soit de façon comparable les facteurs Xa et IIa (HNF), soit de façon prédominante le facteur Xa (HBPM). Le fondaparinux a une activité dépendante de l'antithrombine et inhibe spécifiquement le facteur Xa. TF: facteur tissulaire.

DABIGATRAN (Pradaxa)

- Inhibiteur de la thrombine (II)
- 1/2 vie : 9-11 heures
- Élimination rénale
- Posologie :
 - ⇒ 150 mg × 2/j
 - ⇒ 110 mg × 2/j, recommandée si IRC modérée (DFG 30-49) ou âge > 80 ans ou HAS-BLED ≥ 3 ou coprescription (vérapamil)
- Contre-indication : DFG < 30 mL/min, insuffisance hépatique sévère

RIVAROXABAN (Xarelto)

- Inhibiteur du facteur X
- 1/2 vie : 5-13 heures
- Élimination rénale et hépatique
- Posologie :
 - ⇒ 20 mg/j
 - ⇒ 15 mg/j si risque hémorragique élevé ou insuffisance rénale modérée (DFG 15-49 mL/min)
- Contre-indication: IRC sévère (DFG < 15 mL/min), insuffisance hépatique sévère, interaction médicamenteuse (CYP450)

APIXABAN (Eliquis)

- Inhibiteur du facteur X
- 1/2 vie : 9-14 heures
- Élimination rénale et digestive
- Posologie :
 - ⇒ 5 mg × 2/j
- ⇒ 2,5 × 2/j mg/j si ≥ 2 facteurs de risque (âge > 80 ans, poids < 60 kg, créatinine > 133)
- Contre-indication : IRC sévère (DFG < 30 mL/min), insuffisance hépatique sévère, interaction médicamenteuse (CYP450)

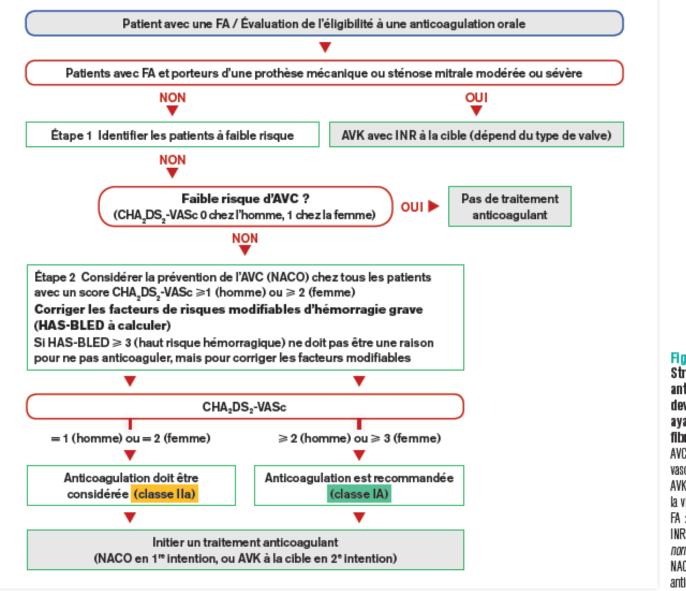


Figure 3. Stratégie

antithromboti que devant un patient avant une fibrillation atriale.

AVC : accident vasculaire cérébral : AVK : antagoniste de la vitamine K :

FA: fibrillation atriale: INR: International normalized ratio : NACO: nouvel anticoagulant oral.

TABLEAU 1	SC	ORE CHA ₂ DS ₂ Vasc	
	С	Congestive heart failure/left ventricular dysfunction (insuffisance cardiaque /dysfonction ventriculaire gauche)	1
	Н	Hypertension (hypertension artérielle)	1
,	A	Age ≥ 75 years (75 ans et plus)	2
	A	Age 65-74 years (64 à 75 ans)	1
ı	D	Diabetes (diabète)	1
	S	Stroke (antécédent d'AVC, AIT ou embolie systémique)	2
	S	Sex category - female (femmes)	1
Vá	asc	Vascular disease (maladie vasculaire)*	1
S	core	e maximum	9

D'après la réf. 3.

AIT : accident ischémique transitoire ; AVC : accident vasculaire cérébral.

^{*} Antécédent d'infarctus du myocarde, maladie artérielle périphérique, plaque aortique.

TABLEAU 2	SC	ORE HAS-BLED	
	Н	Hypertension (hypertension artérielle)	1
•	A	Abnormal renal and liver function (anomalie de la fonction rénale ou hépatique) 1 point chacun	1 ou 2
	S	Stroke (AVC)	1
ı	В	Bleeding (saignement)	1
	L	Labile INR (INR instable)	1
	E	Elderly (âge > 65 ans)	1
ı	D	Drugs or alcohol (médicaments ou alcool) 1 point chacun	1 ou 2
s	cor	e maximum	9
M	lode	d'emploi du tableau	
_	штл .	dófinia nar DAS > 160 mmHa	

- HTA définie par PAS > 160 mmHg
- Anomalie de la fonction rénale définie par une dialyse, ou une transplantation rénale ou créatinine ≥ 200 mmol/L
- Anomalie de la fonction hépatique définie par une maladie chronique hépatique (cirrhose) ou des anomalies significatives du bilan hépatique (p. ex. bilirubine à 2 fois la normale en association avec aspartate et alanine aminotransférases, phosphatases alcalines à 3 fois la normale, etc.) • Saignement : antécédents de saignement et/ou prédisposition à un sai-
- gnement, p. ex. anémie, diathèse hémorragique, etc.
- INR labile: INR instable/élevé ou temps insuffisant dans la cible (p. ex. 60 %)
- Médicaments/alcool: médicaments associés comme les AINS, les antiagrégants plaquettaires ou abus d'alcool, etc.

En pratique

- Héparine de bas PM (HBPM), antivitamines K (AVK), nouveaux anticoagulants oraux (NACO)
- Indications:
 - Score CHA2DS2Vasc > 1 (homme) ou 2 (femme):
 AVK ou NACO (apixaban)
 - Valve mécanique, sténose mitrale moyenne ou sévère, insuffisance rénale sévère: AVK
 - Chimiothérapie thrombopéniante: HBPM

Anticoagulant oral dans la fibrillation auriculaire

Warfarine, ou apixaban, selon la situation clinique

RÉSUMÉ

- Chez les patients atteints de fibrillation auriculaire exposés à un risque modéré ou élevé d'accident vasculaire cérébral (AVC) ischémique, un traitement par anticoagulant a en général une balance bénéfices-risques favorable. La warfarine, utilisée depuis les années 1950, est l'anticoagulant oral de référence.
- Au début des années 2010, des anticoagulants oraux dits directs ont été autorisés pour les patients atteints de fibrillation auriculaire sans atteinte valvulaire : un inhibiteur direct de la thrombine, le dabigatran ; et des inhibiteurs du facteur Xa, l'apixaban, l'édoxaban et le rivaroxaban.
- Chez les patients atteints de fibrillation auriculaire sans atteinte valvulaire sévère, dans quelle mesure ces anticoagulants sont-ils un progrès par rapport à la warfarine pour prévenir les AVC et les embolies artérielles périphériques ? Pour répondre à cette question, nous avons réalisé une synthèse selon la méthode de Prescrire.
- Le dossier initial d'évaluation de chacun de ces anticoagulants oraux directs repose sur un essai randomisé versus warfarine chez des patients

- atteints de fibrillation auriculaire sans atteinte valvulaire sévère. Le niveau de preuves apporté par ces essais est altéré par des faiblesses méthodologiques.
- Dans ces essais il n'y a pas eu de différence statistiquement significative de mortalité globale.
 Aucun des anticoagulants directs n'a paru beaucoup moins efficace que la warfarine pour prévenir les AVC ou les embolies artérielles périphériques.
- L'apixaban a paru plus efficace que la warfarine: pour 1 000 patients traités pendant 1 an, environ 3 AVC ou embolies artérielles périphériques en moins avec l'apixaban, et 10 hémorragies graves en moins.
- Le dabigatran à raison de 300 mg par jour a paru plus efficace que la warfarine, mais sans diminution du risque d'hémorragie grave.
- Les hémorragies mortelles ont été moins fréquentes avec le rivaroxaban et l'édoxaban qu'avec la warfarine, mais sans preuve d'une plus grande efficacité en prévention des AVC ou embolies artérielles périphériques.
- Chez les patients âgés d'au moins 75 ans, le risque hémorragique a paru plus faible avec ces

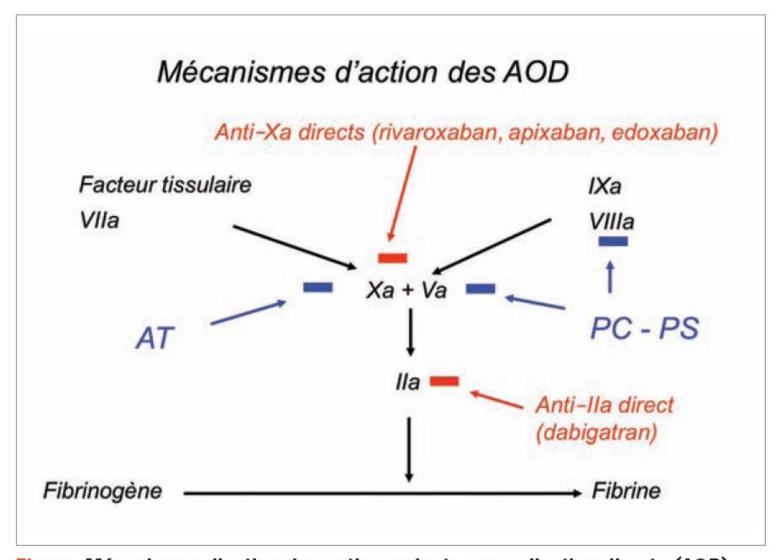


Figure. Mécanismes d'action des anticoagulants oraux d'action directe (AOD). AT : antithrombine ; PC : protéine C ; PS : protéine S.

Principaux essais randomisés anticoagulants oraux directs versus warfarine

chez des patients atteints de fibrillation auriculaire sans prothèse valvulaire

ni sténose mitrale modérée ou sévère (au 14 décembre 2018)

Essais (année de	Anticoagulant comparé à la	Caractéristiques des patients	Durée médiane						
publication)	warfarine (INR cible entre 2 et 3)		de suivi	Critère principal d'évaluation	Critères secondaires d'évaluation				
				AVC ou embolies artérielles périphériques	Hémorragies intra- crâniennes	Hémorragies digestives	Hémorragies graves	Mortalité par hémorragie	Mortalité globale
Aristotle (2011) (9,14)	apixaban 10 mg/jour en 2 prises	18 201 patients risque faible d'AVC (1/3) ou modéré à élevé (2/3) Âge médian : 70 ans 19 % antécédent AVC, AIT ou d'embolie artérielle périphérique	22 mois	1,3 vs 1,6 (p = 0,01)	0,3 vs 0,8 (p < 0,001)	0,8 vs 0,9 (NS)	2,1 vs 3,1 (p < 0,001)	0,2 vs 0,3 Ipas Ganalyse Statistique)	3,5 vs 3,9 (NS)
Re-Ly (2009) (7,11,15)	2009) 220 mg/jour risque q/AVC dabigatran 300 mg/jour Åge n 71 ans 20 % antéci	risque faible d'AVC (1/3) ou modéré à élevé (2/3) Âge moyen : 71 ans	24 mois	1,5 vs 1,7 (NS)	0,2 vs 0,8 (p < 0,001)	1,2 vs 1,1 (NS)	2,9 vs 3,6 (p = 0,003)	Non rapportée	3,8 vs 4,1 (NS)
				1,1 vs 1,7 (p < 0,001)	0,3 vs 0,8 (p < 0,001)	1,6 vs 1,1 (p = 0,001)	3,3 vs 3,6 (NS)	Non rapportée	3,6 vs 4,1 (NS)
Engage AF-TIMI 48 (2013)	édoxaban 30 mg/jour en 1 prise	21 105 patients risque modéré à élevé d'AVC	34 mais	2,0 vs 1,8 {NS}	0,3 vs 0,9 (p < 0,001)	0,8 vs 1,2 p < 0,001)	1,6 vs 3,4 (p < 0,001)	0,13 vs 0,38 (p < 0,001)	3,8 vs 4,4 (p = 0,006
(10,12)	édoxaban 60 mg/jour en 1 prise	Age médian : 72 ans 28 % antécédent AVC, AIT		1,6 vs 1,8 (NS)	0,4 vs 0,9 (p < 0,001)	1,5 vs 1,2 (NS)	2,8 vs 3,4 (p < 0,001)	0,21 vs 0,38 (p = 0,006)	4,0 vs 4,4 (NS)
Rocket AF (2011) (8,13)	riveroxeben 20 mg/jour en 1 prise	14 264 patients risque modéré à élevé d'AVC Âge médian : 73 ans 55 % antécédent AVC, AIT ou d'embolie artérielle périphérique	23 mois	2,1 vs 2,4 (NS)	0,5 vs 0,7 (NS)	3,2 vs 2,2 (p < 0,001)	3,6 vs 3,4 (NS)	0,2 vs 0,5 (p = 0,003)	4,5 vs 4,9 (NS)

AVC = accident vasculaire cérébral (ischémique ou hémorragique); AIT = accident ischémique transitoire; NS = statistiquement non significatif quand $p \ge 0.05$ pour le critère principal d'évaluation ou $p \ge 0.01$ pour un critère secondaire d'évaluation; vs = versus

Des études de cohorte totalisant plus d'un million de patients ont eu des résultats concordants avec les essais randomisés, en termes d'effet préventif des AVC et en termes d'hémorragies. Aucune de ces cohortes ne concerne l'édoxaban. Dans les cohortes comparant des anticoagulants directs entre eux, les hémorragies graves ont paru moins fréquentes avec l'apixaban qu'avec le dabigatran ou le rivaroxaban. En pratique, en 2019, la warfarine reste l'anticoagulant oral de premier choix chez les patients les plus à risque, avec la possibilité d'adapter sa dose selon l'INR. L'apixaban est une alternative acceptable à la warfarine en l'absence d'atteinte valvulaire sévère, d'insuffisance rénale sévère, et d'affection ou de traitement qui augmente les risques hémorragiques. Le dabigatran et le rivaroxaban paraissent avoir une balance bénéficesrisques moins favorable.

Rev Prescrire 2019; 39 (425): 194-205

Apixaban: commercialisé sous le nom Eliquis

Premiers Choix Prescrire

La rubrique Premiers Choix Prescrire présente dans un format synthétique les éléments de choix essentiels pour faire face à diverses situations cliniques fréquentes. Ces textes proposent une aide concise pour identifier la situation, comparer les balances bénéfices-risques des différents soins, retenir les premiers choix adaptés et écarter les options plus dangereuses qu'utiles. En complément, les renvois et références cités dans ces synthèses permettent aussi de se reporter à des données plus détaillées en matière d'évaluation, d'effets indésirables et d'interactions médicamenteuses.

Fibrillation auriculaire

L'essentiel sur les soins de premier choix

POINTS-CLÉS

- Une fibrillation auriculaire est un trouble du rythme cardiaque lié à une activité électrique auriculaire désordonnée et souvent rapide, identifiable à l'électrocardiogramme.
- Le traitement vise surtout à prévenir les embolies artérielles (notamment les accidents vasculaires cérébraux) et à soulager la gêne fonctionnelle éventuelle.
- La prévention des embolies artérielles repose sur un traitement par un anticoagulant oral : l'apixaban ou la warfarine, selon la situation clinique de chaque patient.

Actualisation : juin 2022

Le traitement d'une fibrillation auriculaire mal tolérée repose sur le ralentissement de la fréquence cardiaque ou sur le rétablissement du rythme sinusal, selon la situation clinique de chaque patient.

Anévrisme de l'aorte abdominale

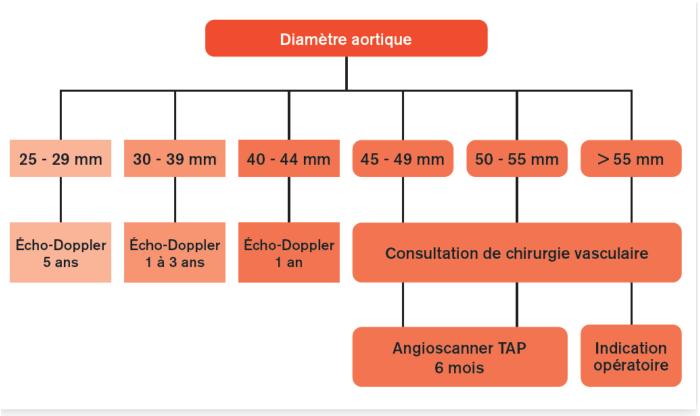
Surveillance Intervals for Small Abdominal Aortic Aneurysms

A Meta-analysis

The RESCAN Collaborators*

Malgré des résultats différents selon les études, cette méta-analyse semble montrer que les anévrismes de l'aorte abdominale de petite taille n'exposent qu'à un risque faible de rupture pendant plusieurs années.

Surveiller les hommes ayant un anévrisme de diamètre inférieur à 4 cm par une échographie tous les deux ans paraît raisonnable.


Table 1. Pooled (Meta-Analysis) Estimates of Abdominal Aortic Aneurysm Growth and Rupture for Men and Women

		AAA Diameter, cm								
	3.	0	3.	5	4.	0	4.	5	5	.0
	Mean (95% CI)	95% PI	Mean (95% CI)	95% PI	Mean (95% CI)	95% PI	Mean (95% CI)	95% PI	Mean (95% CI)	95% PI
Growth rate, mm/y Men	1.28 (1.03-1.53)	0.17-2.40	1.86 (1.64-2.08)	0.85-2.88	2.44 (2.22-2.65)	1.47-3.41	3.02 (2.79-3.25)	2.00-4.04	3.61 (3.34-3.88)	2.45-4.77
Women	1.46 (1.07-1.85)	0.03-2.89	1.98 (1.65-2.32)	0.75-3.22	2.51 (2.22-2.81)	1.47-3.56	3.06 (2.80-3.33)	2.18-3.95	3.62 (3.36-3.89)	2.79-4.45
Time to breach surgery threshold, y ^a Men	7.4 (6.7-8.1)	4.9-11.3	5.0 (4.6-5.4)	3.4-7.1	3.2 (3.0-3.4)	2.3-4.4	1.8 (1.7-2.0)	1.3-2.5	0.7 (0.6-0.8)	0.4-1.2
Women	6.9 (6.1-7.8)	4.5-10.6	4.8 (4.3-5.3)	3.3-6.8	3.1 (2.9-3.4)	2.3-4.3	1.8 (1.7-2.0)	1.3-2.5	0.7 (0.6-0.8)	0.4-1.3
Rate of rupture, per 1000 person-years Men	0.5 (0.3-0.7)	0.3-0.7	0.9 (0.6-1.3)	0.5-1.5	1.7 (1.1-2.4)	0.6-4.3	3.2 (2.2-4.6)	1.0-10.0	6.4 (4.3-9.5)	1.7-23.5
Women	2.2 (1.3-4.0)	0.9-5.7	4.5 (2.8-7.2)	2.1-9.7	7.9 (4.5-13.9)	1.7-36.1	14.7 (8.1-27.7)	2.3-95.1	29.7 (15.9-55.4)	3.9-222.9
Time to 1% chance of rupture, y ^b Men	8.5 (7.0-10.5)	5.1-14.2	5.5 (4.4-6.8)	2.8-10.7	3.5 (2.8-4.3)	1.8-6.9	2.2 (1.8-2.8)	1.1-4.4	1.4 (1.2-1.8)	0.7-2.8
Women	3.5 (1.9-6.4)	0.8-14.6	2.1 (1.2-3.6)	0.4-11.1	1.4 (0.9-2.1)	0.3-5.8	0.9 (0.6-1.4)	0.2-3.5	0.7 (0.5-1.1)	0.2-3.3

Abbreviation: AAA, aortic abdominal aneurysm; PI, prediction interval.

^a Time taken to reach a 10% chance that the 5.5-cm threshold for surgery has been crossed.

^b Time taken to reach a 1% chance of rupture.

igure 1. Surveillance des anévrysmes de l'aorte abdominale : modalités et fréquence. TAP : thoraco-abdomino-pelvien.

Traitement

ORIGINAL ARTICLE

Long-Term Comparison of Endovascular and Open Repair of Abdominal Aortic Aneurysm

Frank A. Lederle, M.D., Julie A. Freischlag, M.D., Tassos C. Kyriakides, Ph.D., Jon S. Matsumura, M.D., Frank T. Padberg, Jr., M.D., Ted R. Kohler, M.D., Panagiotis Kougias, M.D., Jessie M. Jean-Claude, M.D., Dolores F. Cikrit, M.D., and Kathleen M. Swanson, M.S., R.Ph., for the OVER Veterans Affairs Cooperative Study Group*

Figure 1. Open Repair of an Infrarenal Abdominal Aortic Aneurysm.

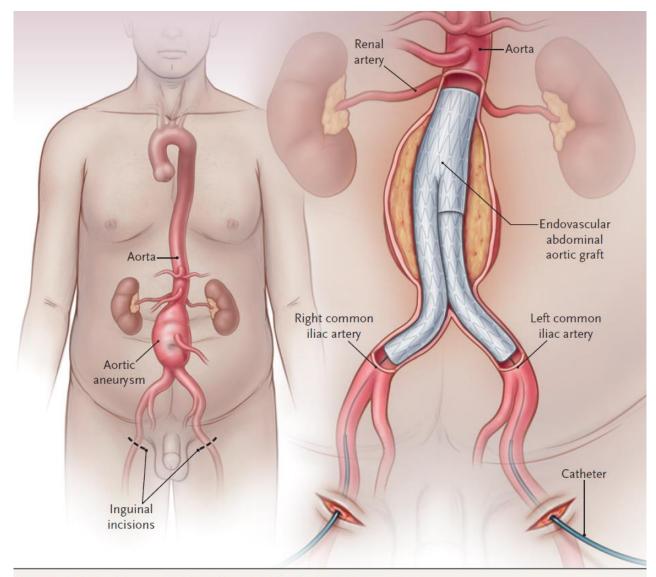


Figure 2. Endovascular Repair of an Infrarenal Abdominal Aortic Aneurysm.

Résultats

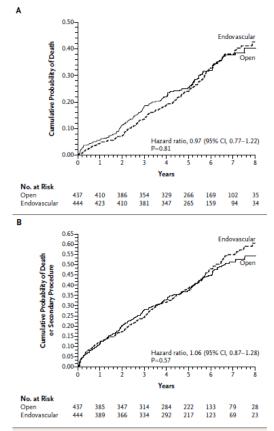


Figure 1. Kaplan—Meier Plots of the Cumulative Probability of Death or a Secondary Therapeutic Procedure, According to Type of Aneurysm Repair

- La mortalité au cours des premières semaines qui suivent l'intervention est moindre avec la chirurgie endovasculaire qu'avec la chirurgie conventionnelle.
- Pendant environ 3 ans, sans signal d'augmentation des risques au terme d'un suivi de 9 ans. Quand une intervention sur un anévrisme de l'aorte abdominale est souhaitable, il est justifié de proposer en premier choix une chirurgie endovasculaire

Artériopathie oblitérante des membres inférieurs

Présentation clinique

- Claudication intermittente : douleur unilatérale à la marche (mollet), survenant après une certaine distance et obligeant le patient à s'arrêter.
 - A l'examen:
 - abolition d'un ou plusieurs pouls : pédieux, tibial postérieur, poplité, fémoral.
 - souffle artériel vasculaire traduisant la présence d'une sténose.
- Ischémie critique : douleurs de décubitus, trouble trophiques
- Oblitération artérielle aiguë

Examens complémentaires

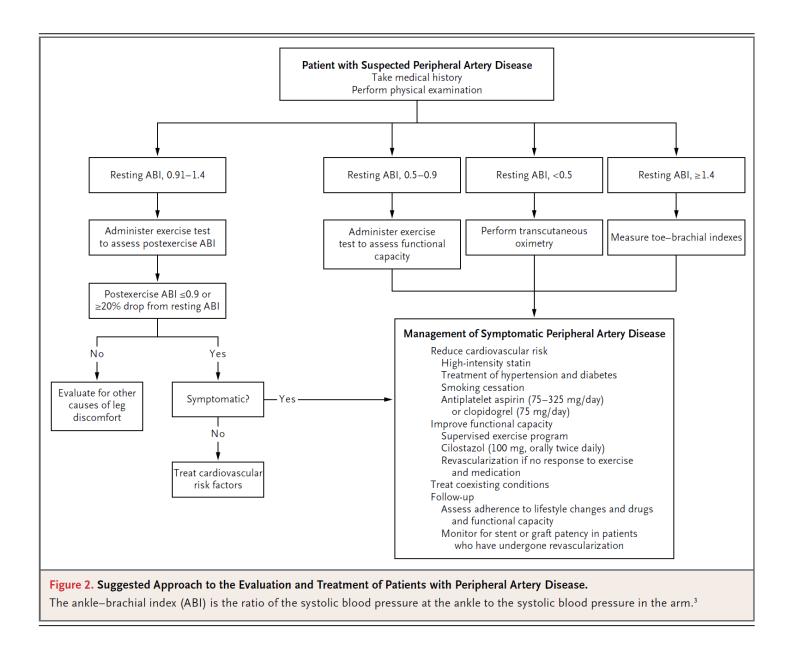
- Mesure de l'indice de pression systolique à la cheville (Doppler) avec rapport cheville-bras :
 - * > 1,3 : médiacalcose.
 - * 0,9 1,3 : normal.
 - * 0,75 0,9 : artériopathie compensée.
 - * 0,4 0,75 : artériopathie décompensée.
 - * < 0,4 : ischémie chronique critique.
- Echo-Doppler artériel.
- Angioscanner hélicoïdal ou angiographie par résonance magnétique

Classification (Leriche et Fontaine)

CL	ASSIFICATION CLINIQUE DE L'ARTI	ÉRIOPATHIE OBLITÉ	RANTE DES MEMBR	IES INFÉRIEURS							
Class	ification de Fontaine	Classification de Rutherford									
Stade	Symptômes	Grade	Catégorie	Symptômes							
I	asymptomatique	0	0	asymptomatique							
II	claudication	claudication I 1		claudication minime							
		I	2	claudication modérée							
		I	3	claudication sévère							
III	douleur de repos	II	4	douleur de repos							
IV	ulcère	III	5	perte minime de tissu							
		III	6	perte majeure de tissu							

Associations à d'autres atteintes artérielles: à rechercher

- Coronaropathie : dépistage coronarien (ECG, épreuve d'effort).
- Troncs supra-aortiques (AVC, AIT) : écho-Doppler.
- Artères rénales (HTA, insuffisance rénale évolutive).
- Artères digestives : angor digestif, amaigrissement, diarrhée.
- Anévrisme de l'aorte abdominale.


Traitement

1) Maladie athéromateuse:

- Arrêt du tabac (facteur principal)
- Régime méditerranéen
- Antiagrégants : aspirine (75mg/j) : réduction significative risque d'AVC
- Entraînement à la marche
- Statines si hypercholestérolémie
- Un β-bloquant si CMI
- Inhibiteurs de l'enzyme de conversion si HTA ou CMI

2) <u>Insuffisance artérielle</u>:

- Radiologie interventionnelle (avec ou sans prothèse)
- Chirurgie de revascularisation (souvent en deuxième intention ou selon la localisation)

Prévention par le régime méditerranéen

Figure. Kaplan-Meier Estimates of the Incidence of PAD in the Total Study

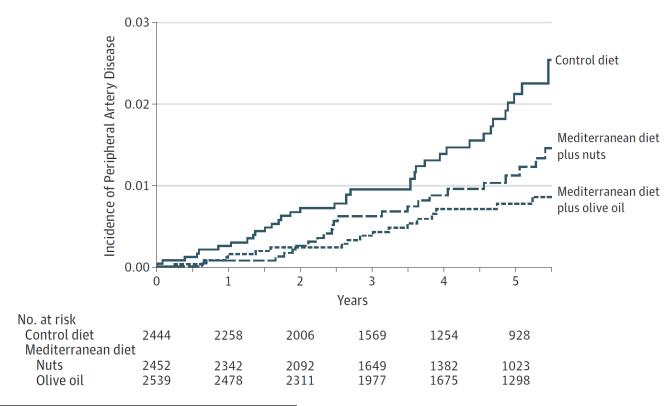


Table. Incident Peripheral Artery Disease by Intervention Group

	Mediterrar	nean Diet	
	Extra-Virgin Olive Oil	Nuts	Control
No. of patients	2539	2452	2444
No. of cases	18	26	45
Person-years of follow-up	11 796	10 329	9676
Crude rate/1000 person-years (95% CI)	1.5 (1.0-2.4)	2.5 (1.7-3.7)	4.7 (3.5-6.2)
Hazard ratios of PAD by intervention group (95% CI) ^a			
Model			
Crude	0.32 (0.19-0.56)	0.51 (0.32-0.83)	1 [Reference]
Age and sex adjusted	0.31 (0.18-0.54)	0.48 (0.29-0.78)	1 [Reference]
Multivariable adjusted ^b	0.34 (0.20-0.58)	0.50 (0.30-0.81)	1 [Reference]
Multivariable adjusted ^c	0.36 (0.20-0.62)	0.52 (0.32-0.86)	1 [Reference]
Multivariable adjusted ^d	0.36 (0.21-0.65)	0.54 (0.32-0.92)	1 [Reference]

Abbreviation: PAD, peripheral artery disease.

(illiterate or elementary education vs secondary education or university), hormone therapy, antiplatelet therapy, statins, angiotensin-converting enzyme inhibitors, β -blockers, diuretics, insulin, other hypoglycemic agents, total vitamin D intake, dietary vitamin B₁₂ intake, dietary folic acid intake, and family history of premature cardiovascular disease.

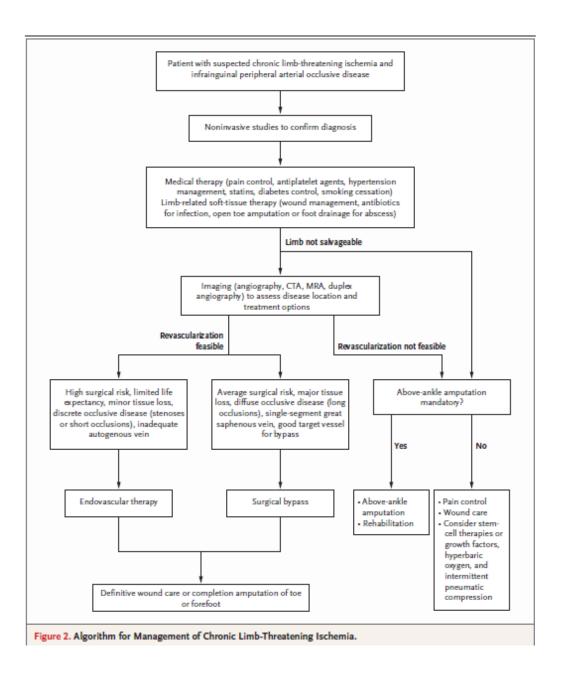
Le NST pour prévenir 1 cas d'artériopathie par an était de 336 (IC à 95%, 269-566) pour le régime méditerranéen plus l'huile d'olive extra-vierge groupe et 448 (IC à 95%, 316-1536) pour le régime méditerranéen plus l'huile de noix.

^a Stratified by center.

^b Adjusted for age, sex, smoking (current or former), diabetes, hypertension, and hyperlipidemia.

^c Additionally adjusted for height, waist circumference, body mass index, baseline adherence to the Mediterranean diet (14-point score), leisure-time physical activity (metabolic equivalent tasks in minutes/day), educational level

^d Complete case analysis excluding 514 participants for whom there was no documented event or who were lost to follow-up for 2 years or longer.



Aspirin for the Prevention of Cardiovascular Events in Patients With Peripheral Artery Disease: A Meta-analysis of Randomized Trials

Jeffrey S. Berger; Mori J. Krantz; John M. Kittelson; et al.

JAMA. 2009;301(18):1909-1919 (doi:10.1001/jama.2009.623)

	No. of E Total No. o				1	
Source	Aspirin	Control	Weatt, %	RR (p S)/ C()*	Favore Aspirin Favore Control	PVNus
Non fatal MI					14103754111111111111111111111111111111111111	
Balch et al. *2008	56/638	56/638	667	0.98(0.69-1.40)	+	.02
Catalono et al. ²¹ 2007	0/185	Q/181	10	0.05(0.00-0.88)	-	.04
BMFT-II, ⁹ 1008 Study group on pharm-scological treatment after PTI, ²⁰ 1004	1/170	3/164	17	0.32(0.03-3.05)		.32
McCollum et al. ²² 1991	14/286	6/263	95	2.15(0.84-5.50)	<u> </u>	.11
Heiss et al. ²⁰ 1000	3/132	2/67	27	0.76(0.13-4.46)		.76
Colvel et 4, 22 1080	10/110	8/121	106	1.38 (0.563.36)		.48
Donaldson et al, 29 1985	0/33	0/32	90			
Herro et al, ²⁰ 1985 Goldman and McCollum, ²⁸ 1984	2/160	0/80	00	2.52(0.12.51.70)	•	.55
Kithler et al. ²¹ 1984 Schoop and Levy ²⁰²¹ 1984	4/200	3/100	30	0.67(0.15.242)	_!	.50
Green etal 29 1982	0/32	0/17	90	uer(u is zwz)		.50
Harjola et al. 2 1081	0/200	0/100	90			
Ehrezmann et al. ²⁴ 1977	0/215	0/213	90			
Hess and Kell-Kuri, 2 1975	2/92	2/84	22	0.91(0.13-6.34)		.63
Hess and Kell-Kuri, 2 1975	1/42	0/40	08	2.86(0.12.6823)		.52
Zokert, 2 1075	0/148	0/150	00			
Total	Q2/2 823	80/2446		1.04 (0.78-1.39)	+	.81
Non fatal stroke						
Balch at a (*2008	20/638	41/638	563	0.71 (0.45-1.12)	-= †	.14
Catalono et al. ²¹ 2007	2/185	6/181	48	0.33 (0.07-1.50)		.17
BMFT-I, ⁴⁸ 1008					i	
Study group on pharm-scological treatment after PTX, ²⁰ 1994						
McCollum et al. 22 1991	14/286	16/263	248	0.80(0.40-1.62)		.54
Moderate at 29 1000	1/132	1/67	16	0.51(0.03.7.69)		.ಣ
Heiss at al. ³⁹ 1000 College at al. ³² 1000	2/110	7/121	50	0.31(0.07-1.48)		.14
Donaldson et al. 29 1995	0/33	0/32	90	,,	-	.14
Hero et al. ³⁰ 1988	0/160	3/80	14	0.07(0.00-1.37)		.08
Goldman and McCollum, ²⁸ 1984 Kichler et al, ²⁴ 1984				, ,		
Schoop and Levy ²⁰²⁴ 1984	2/200	0/100	13	2.51 (0.12.51.84)		.55
Green et al. ²⁹ 1982	1/32	0/17	12	1.64(0.07-38.14)		.76
Harjola et al, ²¹ 1081 Briesmannet al, ²¹ 1077	0/200 0/215	1/100 0/213	12 00	0.17(0.01-4.08)		.27
Hess and Kell-Kuri, 2 1975	1/02	0/84	12	2.74(0.11-6641)		.54
Hess and Kell-Kuri, 2 1975	042	1/40	12	0.32(0.01-7.58)		.48
Zekert 24 1975	0/148	0/150	90	()	-	
Total	52/2823	76/2446		0.66(0.47-0.94)	-	.02
Cardiovascular death						
Balch et al *2008	43/638	384638	302	1.23(0.80-1.89)	<u>i-</u>	.35
Catalono et al. ²¹ 2007	5/185	4/181	33	1.22(0.33-4.48)	_	.76
BMFT-II, [®] 1908	4/170	4/164	30	0.06(0.253.70)	-	.06
Study group on phermacological treatment after PTX, ²⁰ 1004	2/108	2/115	15	1.06 (0.15-7.43)		.05
McCollum et al, ³² 1991 Heiss et al, ³⁹ 1990	25/286 1/132	39/263 1/67	252 07	0.59(0.370.95)		.03
Heiss at 4,2** 1000 Colwell at 4,2** 1080	1/132 24/110	1/67 25/121	220	0.51 (0.03-7. 66) 1.06 (0.64-1.74)		.ස .ස
Donaldson et al, ²⁰ 1985	4/33	0/32	97	1.06 (0.64-1.74) 8.74 (0.49-15597)	<u> </u>	.14
Herr at at 20 1985	3/160	0/80	06	3.52(0.18-6737)		.40
Goldman and McCollum. 4 1984	0/22	2/31	96	0.28(0.01-5.53)	-	.40
Kithler at at 21 1084	250	250	15	1.00(0.15-6.82)		>.00
Schoop and Levy ²⁹²⁴ 1984	8/200	4/100	41	1.00(0.31-3.24)	-+	>.00
Green et al. 29 1982	2/32	0/17	06	2.73(0.14.53.78)		.51
Harjola et al. 2 1081	0/200	2/100	0 6	0.10(0.00-2.07)		. 14
Ehrezmannet al, ²⁸ 1977	0/215	0/213	00		_	
Hess and Kell-Kuri, 29 1975	2/02	4/84	20	0.46(0.09-2.43)		.36
Hermand Kell-Kuri, ²⁶ 1975 Zekert, ²⁶ 1975	3/42 1/148	1/40 3/1 5 0	11	2.86(0.31-2634)		.35 .34
				0.34(0.043.21)	-	
Total	120/2823	128/2446		0.04 (0.74-1.10)	-	.50

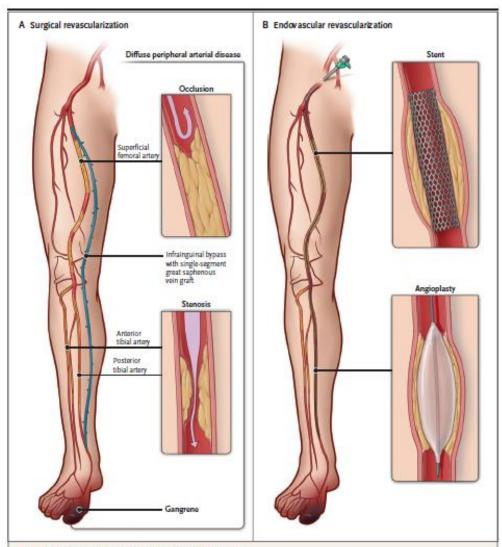


Figure 3. Surgical and Endovascular Revascularization Techniques.

Panel A shows a leg with severe infrainguinal arterial occlusive disease and presence of multifocal stenoses and occlusions. A singlesegment great saphenous vein bypass (proximal superficial femoral artery to distal posterior tibial artery) circumvents these stenoses and occlusions. Panel B shows a wire (delivered through a sheath) that has successfully crossed the multiple stenoses and occlusions. Insets show the deployment of a stent in the superficial femoral artery and balloon angioplasty of the posterior tibial artery.

Contextes pathologiques particuliers

SIDA

Causes de décès chez les pe par le VIH en France, en 2000			
Année	2000	2005	2010
Nombre total de décès étudiés	964	1042	728
Åge médian au décès	41 ans	46 ans	50 ans
Décès dus à des complications sida	47 %	36 %	25 %
Décès dus à des cancers « non classant sida », non liés aux hépatites	11 %	17 %	22 %
Décès dus à des maladies hépatiques	13 %	15 %	11 %
Décès d'origine cardiovasculaire	7 %	8 %	10 %
Décès d'autres causes	22 %	24 %	32 %

\supset	e risque cardiovasculaire chez les personnes le VIH, selon les recommandations d'experts 2013								
Åge	Homme de 50 ans ou plusFemme de 60 ans ou plus								
Antécédents familiaux de maladie coronaire précoce	 Infarctus du myocarde ou mort subite avant l'âge de 55 ans chez le père ou chez un parent de 1^{er} degré de sexe masculin Infarctus du myocarde ou mort subite avant l'âge de 65 ans chez le père ou chez un parent de 1^{er} degré de sexe féminin 								
Tabagisme	ActuelOu arrêté depuis moins de 3 ans								
Hypertension artérielle	PermanenteTraitée ou non								
Paramètres métaboliques	 Diabète sucré HDL-cholestérol < 0,40 g/L (1 mmol/L) quel que soit le sexe LDL-cholestérol > 1,60 g/l (4,11 mmol/L) 								
Infection par le VIH	 Production du VIH non contrôlée Nadir des lymphocytes CD4 < 200/mm³ Lymphocytes CD8 > 800/mm³ Exposition cumulée > 10 ans aux inhibiteurs de la protéase 								
Facteur protecteur	HDL-cholestérol ≥ 0,60 g/L (1,5 mmol/L)								

Adapté à partir des recommandations 2005 de l'Afssaps, réf. 2. Il est proposé de définir les objectifs de LDL-cholestérol en fonction du nombre de facteurs de risque comme le recommande l'Afssaps, l'infection par le VIH devant ou non être comptée comme l'un d'entre eux en fonction des critères ci-dessus.

HDL: lipoprotéines de haute densité; LDL: lipoprotéines de basse densité; VIH : virus de l'immunodéficience humaine.

Cancer guéri

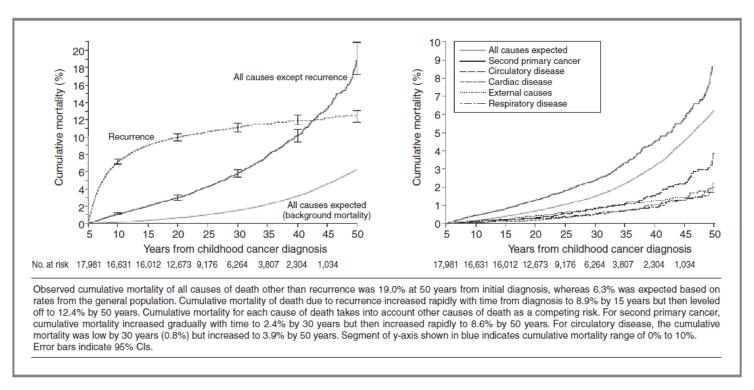


Figure 2. Cumulative mortality of causes of death among survivors of childhood cancer (reprinted from Reulen RC, Winter DL, Frobisher C, et al. Long-term cause-specific mortality among survivors of childhood cancer. JAMA. 2010;304:172–9; used with permission).

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Prediction of Ischemic Heart Disease and Stroke in Survivors of Childhood Cancer

Eric J. Chow, Yan Chen, Melissa M. Hudson, Elizabeth A.M. Feijen, Leontien C. Kremer, William L. Border, Daniel M. Green, Lillian R. Meacham, Daniel A. Mulrooney, Kirsten K. Ness, Kevin C. Oeffinger, Cécile M. Ronckers, Charles A. Sklar, Marilyn Stovall, Helena J. van der Pal, Irma W.E.M. van Dijk, Flora E. van Leeuwen, Rita E. Weathers, Leslie L. Robison, Gregory T. Armstrong, and Yutaka Yasui

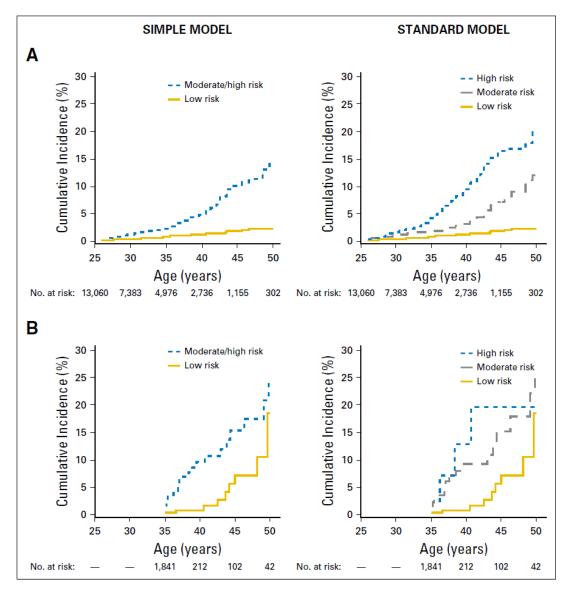
Table 3. Integer Risk Scores Associated With Each Cardiovascular Outcome and Corresponding Prediction Model

	Ischemic H	eart Disease	St	roke
Characteristic	Simple Model	Standard Model	Simple Model	Standard Model
Sex				
Male	1	1		
Female	0	0		
Alkylator, any			1	1
Platinum agents, any			2	
Cranial radiation,*† Gy				
None			0	0
< 20			3‡	0
20-29				1
30-49				3
≥ 50				4
Neck radiation, any	1			
Chest radiation,* Gy				
None	0	0		0
< 5	3‡	0		0
5-14		2		0
15-34		2		0
≥ 35		4		1
Cohort				
CCSS§				
AUC	0.68	0.70	0.63	0.63
C-statistic	0.69	0.70	0.64	0.66
SJLIFE				
AUC	0.69	0.67	0.75	0.68
C-statistic	0.70	0.66	0.75	0.71
EKZ/AMC				
AUC	_	_	0.74	0.72
C-statistic	_	_	0.75	0.72

NOTE. Risk scores of 0, 1, 2, 3, and 4 correspond to rate ratios of < 1.3, 1.3 to 1.9, 2.0 to 2.9, 3.0 to 4.9, and ≥ 5.0 , respectively. Rate ratios for age at cancer diagnosis, anthracyclines, vinca alkaloids, and abdominal radiation were all < 1.3 and did not contribute to the risk scores.

Abbreviations: AUC, area under the curve; C, concordance; CCSS, Childhood Cancer Survivor Study; EKZ/AMC, Emma Children's Hospital/Academic Medical Center; SJLIFE, St Jude Lifetime Cohort.

§Training data set, with estimates reflecting cross-validation within the CCSS cohort.


^{*}Simple model includes radiotherapy exposures as yes or no only; standard model includes radiotherapy dose categories.

[†]Cranial radiation only included for stroke outcome models.

[‡]Represents risk score value for any exposure.

Les groupes à risque faible, modéré et élevé qui en résultaient correspondaient en général à des taux d'incidence cumulés d'environ <5%, 5% à 15% et> 15% à 50 ans, respectivement.

Pour les modèles simples, seuls un groupe à faible risque et un groupe combiné à risque modéré / élevé ont pu être définis

Fig 1. Cumulative incidence of ischemic heart disease by risk group for the (A) Childhood Cancer Survivor Study (n = 13,060 at baseline) and (B) St Jude Lifetime (n = 1,842 at baseline) cohorts. Curves start when all eligible cohort members have entered follow-up (Childhood Cancer Survivor Study at age 26 years; St Jude Lifetime at age 35 years). As such, initial values shown may be > 0%.

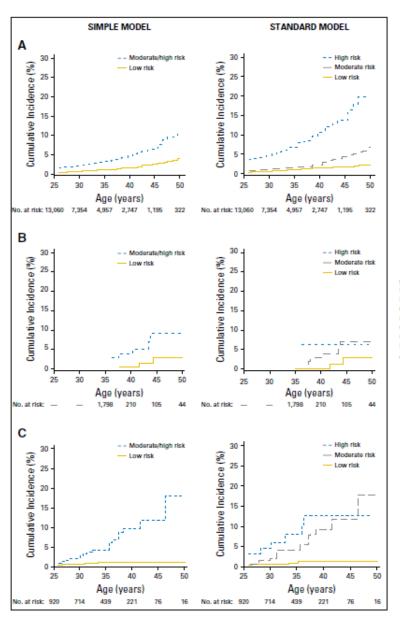


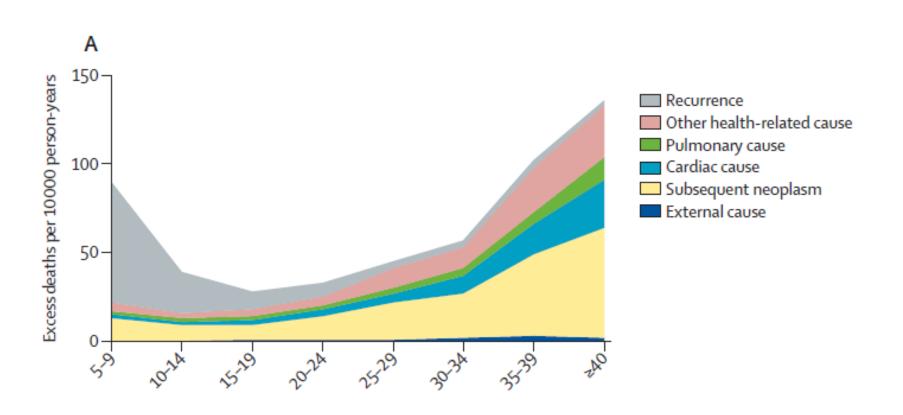
Fig2. Cumulative incidence of stroke by risk group for the (A) Childhood Cancer Survivor Study (n = 19,060 at baseline), (B) St Jude Lifetime (n = 1,842 baseline), and (C) Emma Children's Hospital/Academic Medical Center (n = 1,362 at baseline) cohorts. Curves start when all eligible cohort members have entered follow-up (age 26 years, except for St Jude Lifetime Cohort, which starts at age 35 years). As such, initial values shown may be > 0 %.

Specific causes of excess late mortality and association with modifiable risk factors among survivors of childhood cancer: a report from the Childhood Cancer Survivor Study cohort

Stephanie B Dixon, Qi Liu, Eric J Chow, Kevin C Oeffinger, Paul C Nathan, Rebecca M Howell, Wendy M Leisenring, Matthew J Ehrhardt, Kirsten K Ness, Kevin R Krull, Ann C Mertens, Melissa M Hudson, Leslie L Robison, Yutaka Yasui, Gregory T Armstrong

Summary

Background 5-year survival after childhood cancer does not fully describe life-years lost due to childhood cancer because there are a large number of deaths occurring beyond 5-years (late mortality) related to cancer and cancer treatment. Specific causes of health-related (non-recurrence, non-external) late mortality and risk reduction through modifiable lifestyle and cardiovascular risk factors are not well described. Through using a well-characterised cohort of 5-year survivors of the most common childhood cancers, we evaluated specific health-related causes of late mortality and excess deaths compared with the general US population and identified targets to reduce future risk.


Lancet 2023; 401: 1447-57

Published Online April 5, 2023 https://doi.org/10.1016/ S0140-6736(22)02471-0

See Comment page 1403

.

34.230 survivants à 5 ans d'un cancer infantile diagnostiqué à un âge inférieur à 21 ans de 1970 à 1999 dans 31 établissements aux États-Unis et au Canada

La mortalité cumulée toutes causes confondues sur 40 ans était de 23,3 % avec 3.061 (51,2 %) des 5.916 décès dus à des causes liées à la santé.

Les survivants 40 ans ou plus après le diagnostic ont connu un excès de 131 décès liés à la santé pour 10.000 années-personnes y compris ceux dus aux trois principales causes de décès liés à la santé dans la population générale : cancer (absolu excès de risque pour 10.000 années-personnes 54), maladie cardiaque (27), et les maladies cérébrovasculaires (10).

Un mode de vie sain (basé sur tabagisme, alcool, activité physique et IMC) et l'absence d'hypertension et de diabète étaient chacun associés à une réduction de 20 à 30 % de la mortalité liée à la santé indépendamment d'autres facteurs (toutes les valeurs de p \leq 0,002).

	Subsequent neoplasm							C	ardia	c			Pulm	onary			Other health-related cause																	
		Oropharyngeal	Gastrointestinal	Lungorlarynx	Skin	Breast	Female reproductive	Prostate	Kidney	Bladder	CNS	Bone and soft tissue	Lymphoma	Leukaemia	Benign meningioma	Vahular disease	Ischaemic heart disease	Heart failure or cardiomyopathy	Arrythmia	Hypertensive heart disease	Influenza or pnuemonia	Obstructive	Aspiration	Interstitial lung disease	Diabetes	Hypertension	Atherosclerosis	Cerebrovascular disease	Cirrhosis or liver disease	Kidney fail ure	Pregnancy	Congenital or chromasomal	Sepsis	Viral hepatitis
sis	5-9	0.0	0.1	0.0	0.1	0.1	0.0	0.0	0.1	0.0	1.9	1.2	0.9	3.1	0.1	0.0	0.4	0.8	0.0	0.0	0.6	0.1	0.0	0.6	0.0	0.0	0.3	0.3	0.0	0.1	0.0	0.2	0.2	0.0
agno	10-19	0.1	0.7	0.2	0.2	0.6	0.2	0.0	0.1	0.1	1.7	1.5	0.6	0.8	0.0	0.1	0.9	1.2	0.0	0.0	0.6	0.0	0.0	0.5	0.2	0.1	0.2	0.4	0.0	0.1	0.0	0.2	0.4	0.2
m di	20-29	0.5	2.2	0.8	0.3	1.6	0.0	0.1	0.3	0.0	3.0	1.6	0.9	0.9	0.2	0.6	1.6	1.0	0.1	0.0	1.2	0.2	0.3	0.2	0.0	0.1	0.2	1.1	0.3	0.6	0.1	0.7	1.2	0.2
Years from diagnosis	30-39	0.2	6.3	3.0	0.3	2.7	1.6	0.3	0.9	0.4	5.6	2.1	2.2	0.7	1.0	2.6	3.2	4.8	0.5	0.1	1.8	0.0	1.0	1.2	0.6	0.2	0.8	2.1	0.5	1.5	0.1	1.0	1.4	1.0
Ķ	≥40	3.8	10.6	6.5	0.0	2.2	4.3	2.1	1.0	1.9	5.6	3.9	6.4	1.7	2.0	8.6	9.8	5.8	1.1	0.2	4.1	0.5	3.9	1.2	0.3	0.0	0.0	10.0	0.0	2.8	0.0	0.5	3.4	2.3
	Overall	0.2	1.8	0.7	0.2	1.0	0.3	0.1	0.3	0.1	2.6	1.6	1.0	1.3	0.2	0.6	1.4	1.5	0.1	0.0	0.9	0.1	0.3	0.5	0.2	0.1	0.3	0.9	0.2	0.4	0.1	0.4	0.7	0.3
		Abs	olute e	xcess	risk pe	er 100	000 pe	rson-y	ears																									

Figure 3: Heat map of excess risk of specific causes of health-related mortality among all eligible 5-year survivors overall and by years from diagnosis as absolute excess risk per 10 000 personvears

A green to red colour gradient was applied with lowest value indicated by the deepest green, the midpoint (by percentile) in yellow, and the highest value the darkest red.

	Health-rela	alth-related cause			vent neopla	sm	Cardiac			Pulmor	nary		Other			
	RR	95% CI	p value	RR	95% CI	p value	RR	95% CI	p value	RR	95% CI	p value	RR	95% CI	p value	
Healthy lifestyle score																
Unhealthy (0–2)	1 (ref)			1 (ref)			1 (ref)			1 (ref)			1 (ref)			
Moderate (2·5–3)	0.9	0.8-1.0	0.031	0.9	0.7-1.1	0.25	0.9	0.7-1.2	0.45	0.8	0.5-1.4	0.47	0.8	0.6-1.0	0.11	
Healthy (3·5–4)	0.8	0.7-0.9	0.0020	0.9	0.8-1.2	0.57	0.8	0.5-1.2	0.26	0.6	0.3-1.1	0.093	0.5	0.3-0.7	0.0006	
Cardiovascular ris	sk factors															
Hypertension (no vs yes)	0.7	0.6-0.8	<0.0001	0.9	0-7-1-1	0.33	0.7	0.5–1.0	0.053	0.7	0-4-1-1	0.13	0.5	0-3-0-6	<0.0001	
Diabetes (no vs yes)	0.7	0.6-0.9	0.0008	0.9	0-7-1-3	0.65	0.5	0-3-0-8	0.0043	0.7	0-3-1-4	0.27	0.6	0-4-0-9	0.0068	
Dyslipidaemia (no vs yes)	1.2	1.0-1.4	0.059	0.9	0.8-1.2	0.64	1.2	0.8–1.8	0.29	1.9	0.9-3.8	0.070	1.5	1.0-2.1	0.036	

Relative rates (RRs) are adjusted for treatment exposures of cranial irradiation dose, chest irradiation dose, anthracycline dose, and alkylating agent dose; and sociodemographic factors including age at diagnosis, race and ethnicity, sex, attained age, education, income, and insurance status. Lifestyle factors, including smoking status, alcohol use, physical activity, and unhealthy weight, were assigned a score of 0 (unhealthy) to 1 (healthy) and combined to create a lifestyle score ranging from 0-4, which was further categorised as unhealthy (0-2), moderately healthy (2·5-3), and healthy (3·5-4). Covariates presented in the table (lifestyle category and chronic conditions) and socioeconomic factors (education, income, and insurance) were included in the model as time-dependent variables.

Table 2: Rate ratios of health-related late mortality and association with modifiable lifestyle and cardiovascular risk factors among Childhood Cancer Survivor Study participants who completed at least one survey at age 18 years or older